Prof. Dr. Peter von der Lippe

 www.von-der-lippe.org
Problems with Chain Indices (II) Implementation, Aggregation and Deflation

Course delivered at the European Central Bank Frankfurt
Part II: Aggregation and Deflation
4. Chain indices everywhere: the triumph of chainers
4.1 Regulations and projects: European Union*
4.2 Other countries (USA)*
4.3 Experiences, empirical findings
5. Aggregation and "additivity"
5.1 Types of aggregation and "additivity"
5.2 Additivity and linearity; theorems on linear indices
5.3 Fisher's "ideal" index is far from ideal
6. Deflation and chain indices
6.1 Task of deflation
6.2 Notion of "volume"
6.3 Criteria for "good" deflation
6.4 Direct and chain price indices as deflators
6.5 How to deal with non-additivity of volumes?

[^0]4.1.1 (1) European Union: Regulations on HICP weights

Selected HICP Regulation dealing inter alia with chain index issues A = Council Regulation , $\mathrm{B}=$ Commission Regulation

Quotations relating to these regulations on the next slide

Nr., date, type	Contents
A 2494/95 23 Oct. 1995	defines aim, comparability; timetable, procedure etc. of harmonization but no details of compilation of indices (more
B 1749/96 9 Sept. 1996	Initial coverage of goods and services, practices for updating the coverage and inclusion of newly significant goods and services
B 2454/97 10 Dec. 1997	concerning minimum standards for the quality of HICP weights - defines a maximum age of weights (7 years) and, - requires an annually checking of "critical" weights
B 1921/2001 28. Sept. 2001	Standards for revisions of the HICP (revisions have to be approved and there is no quantitative assessment of the impact of revisions unless a revision affects the results by more than 1 per thousand)
B 1708/2005 19. Oct. 2005	Index reference period, amending No 3 (2214/96 temporal coverage of price collections), introducing consumption "segments"* with far reaching implications for quality adjustment and replacement strategy

[^1]4.1.1 (2) Regulations on HICP weights: More details of some regulations

	"HICPs shall be considered to be comparable if they reflect only differences in price changes or consumption patterns between countries. HICPs which differ on account of differences in the concepts, methods or practices used in their definition and compilation shall not be considered comparable." ".... more than 0.1 percentage point on average over one year against the previous year cannot be accepted."
	"Newly significant goods and services (NSG) are defined as those goods and services the price changes of which are not explicitly included in a Member State's HICP and the estimated consumers' expenditure on which has become at least one part per thousand of the expenditure covered by that HICP." Compulsory checks (once a Member State reports NSG) and adjustments
0 N N + 0 0 0 0 0 0 0 0 0	maximum age of weights ...weightings which reflect consumers' expenditure patterns in a weighting reference period ending no more than seven years before frequency of revision Each year, Member States shall carry out a review of weightings in order to ensure that they are sufficiently reliable and relevant obligatory adjustment of weights Where reliable evidence shows ... [that a weighting change] ... would affect the change in the HICP by more than 0.1 percentage point on average over one year against the previous year Member States shall adjust the weightings of the HICP appropriately

4.1.1 (3) HICP Formula: 1. the national indices H

The formula below represents the planned state when the dates of weights will be harmonised (see slide 7)
December [month 12] of year t-1 is the linking month of this chain-linked Laspeyres type index. For this purpose weights (of National Accounts) are "price updated" only (as a rule volumes are less frequently updated) and normalized (in order to sum up to unity)

$$
\mathrm{H}_{0 t, \mathrm{~m}}=\frac{\sum \mathrm{p}_{\mathrm{t}, \mathrm{~m}} \mathrm{q}_{\mathrm{t}-2}}{\sum \mathrm{p}_{\mathrm{t}-1,12} \mathrm{q}_{\mathrm{t}-2}} \frac{\sum \mathrm{p}_{\mathrm{t}-1,12} \mathrm{q}_{\mathrm{t}-3}}{\sum \mathrm{p}_{\mathrm{t}-2,12} \mathrm{q}_{\mathrm{t}-3}}\left(\frac{\sum \mathrm{p}_{\mathrm{t}-2,12} \mathrm{q}_{\mathrm{t}-4}}{\sum \mathrm{p}_{\mathrm{t}-3,12} \mathrm{q}_{\mathrm{t}-4}} \ldots\right)
$$

$$
\mathrm{t}, 1 \rightarrow \mathrm{t}, \mathrm{~m} \quad \mathrm{t}=0 \rightarrow \mathrm{t}-1, \mathrm{~m}=12
$$

Obviously the expressions in brackets will cancel out when a

$$
\mathrm{H}_{0, \mathrm{t}-1, \mathrm{~m}}=\frac{\sum \mathrm{p}_{\mathrm{t}-1, \mathrm{~m}} \mathrm{q}_{\mathrm{t}-3}}{\sum \mathrm{p}_{\mathrm{t}-2,12} \mathrm{q}_{\mathrm{t}-3}}\left(\frac{\sum \mathrm{p}_{\mathrm{t}-2,12} \mathrm{q}_{\mathrm{t}-4}}{\sum \mathrm{p}_{\mathrm{t}-3,12} \mathrm{q}_{\mathrm{t}-4}} \ldots\right)
$$ ratio of two price indices, both for a month m is formed

$$
\mathrm{t}-1,1 \rightarrow \mathrm{t}-1, \mathrm{~m} \quad \mathrm{t}=0 \rightarrow \mathrm{t},-2, \mathrm{~m}=12
$$

and his ratio then is given by

$$
\mathrm{H}_{0 \mathrm{t}, \mathrm{~m}} / \mathrm{H}_{0, \mathrm{t}-1, \mathrm{~m}}=\frac{\sum \mathrm{p}_{\mathrm{t}, \mathrm{~m}} \mathrm{q}_{\mathrm{t}-2}}{\sum \mathrm{p}_{\mathrm{t}-1,12} \mathrm{q}_{\mathrm{t}-2}} / \frac{\sum \mathrm{p}_{\mathrm{t}-1, \mathrm{~m}} \mathrm{q}_{\mathrm{t}-3}}{\sum \mathrm{p}_{\mathrm{t}-2,12} \mathrm{q}_{\mathrm{t}-3}}
$$

4.1.1 (4) HICP Formula: 2. the multi-national index M as average of H -indices

Comparing month m in t with m in the previous year
$\mathrm{H}_{0, \mathrm{~m}} / \mathrm{H}_{0, \mathrm{t}-1, \mathrm{~m}}=\frac{\sum \mathrm{p}_{\mathrm{t}, \mathrm{m}} \mathrm{q}_{\mathrm{t}-2}}{\sum \mathrm{p}_{\mathrm{t}-1,12} \mathrm{q}_{\mathrm{t}-2}} / \frac{\sum \mathrm{p}_{\mathrm{t}-1, \mathrm{~m}} \mathrm{q}_{\mathrm{t}-3}}{\sum \mathrm{p}_{\mathrm{t}-2,12} \mathrm{q}_{\mathrm{t}-3}}=\frac{\sum \frac{\mathrm{p}_{\mathrm{t}, \mathrm{m}}}{\mathrm{p}_{\mathrm{t}-1,12}} \cdot \mathrm{w}_{\mathrm{t}-1}}{\sum \frac{\mathrm{p}_{\mathrm{t}-1, \mathrm{~m}}}{\mathrm{p}_{\mathrm{t}-2,12}} \cdot \mathrm{w}_{\mathrm{t}-2}} \longleftarrow \stackrel{\begin{array}{c}\text { same formula as on } \\ \text { preceding slide }\end{array}}{\text { pren }}$
implies two weighting structures

$$
w_{t-1}=\frac{p_{t-1,12} q_{t-3}}{\sum p_{t-1,12} q_{t-3}} \text { and } \quad w_{t-1}=\frac{p_{t-1,2,2} q_{t-3}}{\sum p_{t-1,12} q_{t-3}}
$$

The national indices H are combined to the multinational index M using country weights c_{m} $\mathrm{M}_{05}=\left(\sum \mathrm{c}_{\mathrm{m} 0} \mathrm{H}_{\mathrm{m} 01}\right)\left(\sum \mathrm{c}_{\mathrm{m} 1} \mathrm{H}_{\mathrm{m} 12}\right)\left(\sum \mathrm{c}_{\mathrm{m} 2} \mathrm{H}_{\mathrm{m} 23}\right)\left(\sum \mathrm{c}_{\mathrm{m} 3} \mathrm{H}_{\mathrm{m} 34}\right)\left(\sum \mathrm{c}_{\mathrm{m} 4} \mathrm{H}_{\mathrm{m} 45}\right)$
the summation takes place over $\mathrm{m}=1, \ldots, \mathrm{M}$ member countries

M is affected by

- the prices in each member country in each period, - changing weights of the commodities,
- changing domain of definition (new products, outlets etc.) in each country and each period, and
- the path of the index since a chain index is always depending on its "history"
- (varying) country weights c_{m} (and number M).

This section deals with ongoing discussions about HICP methods and problems stemming from the chain-index approach of the HICP. It is necessarily incomplete and should be up-dated with the passage of time. Such topics are

1. Harmonization of the practice of establishing HICP weights

- The present practice allows weights of an age up to seven years is widely different across Member States (MS)
- In some MS weights are derived from HES (as the only reliable source for detailed weights) in other MS from NA
- In which detail and which frequency weights (inclusive of quantities) are to updated?
- How a uniform and more frequent update should be carried out in practice?
- no longer weights of different age

2. Relevance, meaning and method of (isolated) price updating

Is it correct to say - as often maintained - that price updating only (without updating quantities) is inherent in the Laspeyres (fixed base) approach?

If there is only one month as linking period for updating of prices there may be problems with goods like package holiday: is one month representative? are seasonally adjusted or unadjusted prices to be used?

4.1.2 (2) Tighter regulations on HICP weights: Present situation, projects

Eiglsperger/Schackis:

"The actual practices of updating weights differ across the national institutes compiling HICPs, ranging from annual updates to general reviews of weights conducted in five year intervals. These different practices have been made congruent for HICP purposes in order to allow national HICPs to be aggregated, but only in formal terms, i.e. by introducing a price-updating of weights to the December of the respective previous year."

> majority of MS review annually HICP sub-index weights on the basis National Accounts
less detailed then HES and subject to revisions

Austria, Belgium, Cyprus, Denmark, Finland, Germany, Greece, Ireland and Malta conduct a general update of volumes at three to five years intervals using HES* data (not annually available)

* household expenditure surveys

Projects, new initiatives (Eurostat 2008)

Speedier and more uniform (tighter standards for the) revision of weights. More frequent updates are found necessary esp. in the case of fast evolving markets (e.g. information and communication technology)
Amendment or regulation 2454/97

4.1.2 (3) Strategies in updating weights

Annual update not only of prices but also quantities in the weights is considered desirable. Such weights may, however, be not reliable or too costly. Therefore a strategy of updating:

Ideas: 1. not all items (weights) equally relevant, 2. case by case approach, and 3. quantities in weights can be more or less prone to shifts

A and $\Delta \mathrm{B}$ must be $\gg 0$. Eurostat: "fairly insensitive to changes in weights"
2) case-by-case: weights should reflect current consumption patterns; $t-2$ (for quantities) as a compromise (in view of the resources needed for updating), however, weights need not have the same age because:
3) types of weights
critical because of structural shifts: Health care (reforms), goods with administered prices

"non-critical" = less
prone to structural
shifts (e.g. non-dur-
able goods) smoothly
evolving new weights

"non-critical" = less prone to structural shifts (e.g. non-durable goods) smoothly evolving new weights
4.1.2 (4) Regulations and projects: The price updating

In discussion about a HICP price-updating (December) it is popular to refer to the product representation of the direct Laspeyres price index
$\overline{\mathrm{P}}_{03}^{\mathrm{L}}=\left(\sum \frac{\mathrm{p}_{1}}{\mathrm{p}_{0}} \frac{\mathrm{p}_{0} \mathrm{q}_{0}}{\sum \mathrm{p}_{0} \mathrm{q}_{0}}\right)\left(\sum \frac{\mathrm{p}_{2}}{\mathrm{p}_{1}} \frac{\mathrm{p}_{1} \mathrm{q}_{1}}{\sum \mathrm{p}_{1} \mathrm{q}_{1}}\right)\left(\sum \frac{\mathrm{p}_{3}}{\mathrm{p}_{2}} \frac{\mathrm{p}_{2} \mathrm{q}_{2}}{\sum \mathrm{p}_{2} \mathrm{q}_{2}}\right)$
It is maintained that the direct P^{L} is also a product
$\mathrm{P}_{03}^{\mathrm{L}}=\left(\sum \frac{\mathrm{p}_{1}}{\mathrm{p}_{0}} \frac{\mathrm{p}_{0} \mathrm{q}_{0}}{\sum \mathrm{p}_{0} \mathrm{q}_{0}}\right)\left(\sum \frac{\mathrm{p}_{2}}{\mathrm{p}_{1}} \frac{\mathrm{p}_{1} \mathrm{q}_{0}}{\sum \mathrm{p}_{1} \mathrm{q}_{0}}\right)\left(\sum \frac{\mathrm{p}_{3}}{\mathrm{p}_{2}} \frac{\mathrm{p}_{2} \mathrm{q}_{0}}{\sum \mathrm{p}_{2} \mathrm{q}_{0}}\right)=\frac{\sum \mathrm{p}_{3} \mathrm{q}_{0}}{\sum \mathrm{p}_{0} \mathrm{q}_{0}}$ so a regular price update is cogent even in a direct P^{L} approach
However these terms are not in use in the direct approach and they have to be chain-linked
they are re-

$$
\mathrm{P}_{02(1)}^{\mathrm{L}}=\mathrm{P}_{02}^{\mathrm{L}} / \mathrm{P}_{01}^{\mathrm{L}} \quad \text { and } \quad \mathrm{P}_{03(2)}^{\mathrm{L}}=\mathrm{P}_{03}^{\mathrm{L}} / \mathrm{P}_{02}^{\mathrm{L}}
$$

based indices
The direct index can be written in both ways (ratio and product), the chain index can only be written (and compiled) as a product
this formula is not gained by multiplying: there is no chain-linking and
care has to be taken for matching

4.1.2 (5) Price updating of weights: why and how

Moreover: chain indices are affected by

Therefore:
"Price-updating is inherent in the definition of the Laspeyres price index"
is not correct.
It disregards all differences between chain indices and direct indices

How to price-update HICP expenditure weights?

$$
\mathrm{A}=\text { any constant period }
$$

$\left.$| on the level of price
 relatives (elementary
 indices) |
| :--- |
| $\sum p_{i 0} q_{i A} q_{i A}$ |$\frac{\sum p_{i 1} q_{i A}}{\sum \sum p_{i 1} q_{i A}} \quad p_{i 1} q_{i A}=p_{i 0} q_{i A} \cdot\left(\frac{p_{i 1}}{p_{i 0}}\right) \right\rvert\,$

4.1.2 (6) Different lags of prices and quantities (1)

To arrive at a genuine Laspeyres chain (price) index
$\overline{\mathrm{P}}_{0 \mathrm{t}}^{\mathrm{L}}=\left(\sum \frac{\mathrm{p}_{1}}{\mathrm{p}_{0}} \frac{\mathrm{p}_{0} \mathrm{q}_{0}}{\sum \mathrm{p}_{0} \mathrm{q}_{0}}\right)\left(\sum \frac{\mathrm{p}_{2}}{\mathrm{p}_{1}} \frac{\mathrm{p}_{1} \mathrm{q}_{1}}{\sum \mathrm{p}_{1} \mathrm{q}_{1}}\right)\left(\sum \frac{\mathrm{p}_{3}}{\mathrm{p}_{2}} \frac{\mathrm{p}_{2} \mathrm{q}_{2}}{\sum \mathrm{p}_{2} \mathrm{q}_{2}}\right) \ldots=\frac{\sum \mathrm{p}_{1} \mathrm{q}_{0}}{\sum \mathrm{p}_{0} \mathrm{q}_{0}} \frac{\sum \mathrm{p}_{2} \mathrm{q}_{1}}{\sum \mathrm{p}_{1} \mathrm{q}_{1}} \frac{\sum \mathrm{p}_{3} \mathrm{q}_{2}}{\sum \mathrm{p}_{2} \mathrm{q}_{2}} \ldots$
it is crucial to have price and quantity updates at the same intervals.
Some countries suggest that t -2 expenditures should be taken directly as an estimate for $\mathrm{t}-1$ expenditures. Without price updating this amounts to

$$
\breve{P}_{0 \mathrm{t}}^{\mathrm{L}}=\left(\sum \frac{\mathrm{p}_{1}}{\mathrm{p}_{0}} \frac{\mathrm{p}_{-1} \mathrm{q}_{-1}}{\sum \mathrm{p}_{-1} \mathrm{q}_{-1}}\right)\left(\sum \frac{\mathrm{p}_{2}}{\mathrm{p}_{1}} \frac{\mathrm{p}_{0} \mathrm{q}_{0}}{\sum \mathrm{p}_{0} \mathrm{q}_{0}}\right)\left(\sum \frac{\mathrm{p}_{3}}{\mathrm{p}_{2}} \frac{\mathrm{p}_{1} \mathrm{q}_{1}}{\sum \mathrm{p}_{1} \mathrm{q}_{1}}\right)\left(\sum \frac{\mathrm{p}_{4}}{\mathrm{p}_{3}} \frac{\mathrm{p}_{2} \mathrm{q}_{2}}{\sum \mathrm{p}_{2} \mathrm{q}_{2}}\right) \cdots
$$

with price-updating - as required by Eurostat - we get

$$
\tilde{\mathrm{P}}_{0 \mathrm{t}}^{\mathrm{L}}=\left(\sum \frac{\mathrm{p}_{1}}{\mathrm{p}_{0}} \frac{\mathrm{p}_{0} \mathrm{q}_{-1}}{\sum \mathrm{p}_{0} \mathrm{q}_{-1}}\right)\left(\sum \frac{\mathrm{p}_{2}}{\mathrm{p}_{1}} \frac{\mathrm{p}_{1} \mathrm{q}_{0}}{\sum \mathrm{p}_{1} \mathrm{q}_{0}}\right)\left(\sum \frac{\mathrm{p}_{3}}{\mathrm{p}_{2}} \frac{\mathrm{p}_{2} \mathrm{q}_{1}}{\sum \mathrm{p}_{2} \mathrm{q}_{1}}\right)\left(\sum \frac{\mathrm{p}_{4}}{\mathrm{p}_{3}} \frac{\mathrm{p}_{3} \mathrm{q}_{2}}{\sum \mathrm{p}_{3} \mathrm{q}_{2}}\right) \ldots
$$

which is different from $\overline{\mathrm{P}}_{0 t}^{\mathrm{L}}$ but has (in contrast to $\breve{\mathrm{P}}_{0 \mathrm{t}}^{\mathrm{L}}$) an interpretation n terms of ratios of expenditures

4.1.2 (7) Different lags of prices and quantities (2)

Quantities in the weights lagging two periods: with price updating

$$
\begin{aligned}
& \tilde{\mathrm{P}}_{0 \mathrm{t}}^{\mathrm{L}}=\frac{\sum \mathrm{p}_{1} \mathrm{q}_{-1}}{\sum \mathrm{p}_{0} \mathrm{q}_{-1}} \frac{\sum \mathrm{p}_{2} \mathrm{q}_{0}}{\sum \mathrm{p}_{1} \mathrm{q}_{0}} \frac{\sum \mathrm{p}_{3} \mathrm{q}_{1}}{\sum \mathrm{p}_{2} \mathrm{q}_{1}} \frac{\sum \mathrm{p}_{4} \mathrm{q}_{1}}{\sum \mathrm{p}_{3} \mathrm{q}_{1}} \frac{\sum \mathrm{p}_{5} \mathrm{q}_{2}}{\sum \mathrm{p}_{4} \mathrm{q}_{2}} \ldots \\
& \overline{\mathrm{P}}_{0 \mathrm{t}}^{\mathrm{L}}=\frac{\sum \mathrm{p}_{1} \mathrm{q}_{0}}{\sum \sum \mathrm{p}_{0} \mathrm{q}_{0}} \frac{\sum \mathrm{p}_{2} \mathrm{q}_{1}}{\sum \mathrm{p}_{1} \mathrm{q}_{1}} \frac{\sum \mathrm{p}_{3} \mathrm{q}_{2}}{\sum \mathrm{p}_{2} \mathrm{q}_{2}} \frac{\sum \mathrm{p}_{4} \mathrm{q}_{3}}{\sum \mathrm{p}_{3} \mathrm{q}_{3}} \frac{\sum \mathrm{p}_{5} \mathrm{q}_{4}}{\sum \mathrm{p}_{4} \mathrm{q}_{4}} \ldots
\end{aligned}
$$

as opposed to the genuine chain index

The extent to which
$\breve{\mathrm{P}}_{0 \mathrm{t}}^{\mathrm{L}}, \widetilde{\mathrm{P}}_{0 \mathrm{t}}^{\mathrm{L}}$ and $\overline{\mathrm{P}}_{0 \mathrm{t}}^{\mathrm{L}}$
differ depends on changes of quantities $\mathrm{q}_{\mathrm{t}-1} / \mathrm{q}_{\mathrm{t}-2}$ relative to changes of prices $\mathrm{p}_{\mathrm{t}-1} / \mathrm{p}_{\mathrm{t}-2}$.

It is recommended:

	$\mathrm{p}_{\mathrm{t}-1} / \mathrm{p}_{\mathrm{t}-2}$		
$\mathrm{q}_{\mathrm{t}-1} / \mathrm{q}_{\mathrm{t}-2}$	$\ll 1$	≈ 1	$\gg 1$
$\ll 1$	c	c	a
≈ 1	b	a	b
$\gg 1$	a	c	c

a) no price update needed
b) price update only
c) estimate $p_{t-1} q_{t-1}$

International Conference of Labor Statisticians ICLS 2003, § 25:
"Where the weight reference period differs significantly from the price reference period, the weights should be price updated ... Where it is likely that price updated weights are less representative ... this procedure may be omitted"
see also Greenlees+Williams
4.1.3 (1) Problems concerning other indices: Fixed assets, PIM and chaining

Problem addressed by Germany in the Eurostat Seminar "Introduction of Chain Indices in National Accounts" 24-25 October 2002, Luxembourg:
Calculation of capital stock using the Perpetual-Inventory-Method (PIM), when measuring volume at previous year's prices in contrast to the former fixed price method

What has to be done: Valuation of fixed assets at replacement costs of the current period
"The stock of fixed assets should be valued at the purchasers' prices of the current period" (ESA 6.04) "A particular item in the balance sheet should be valued as if it were being acquired on the date to which the balance sheet relates" (ESA 7.25).

Two steps. Conversion of valuations at

1) original acquisition prices \rightarrow constant prices of a fixed year (period)
2) constant prices \rightarrow current replacement costs

Step 1 is necessary because PIM (accumulation!) requires capital formation series (absolute figures, not index series) broken down by asset type in as much detail as possible and valued in a uniform manner at constant replacement costs, i.e. at the prices of an arbitrary fixed base year (to isolate the quantity component).

PIM = accumulation of long times series of capital formation at constant prices in absolute values
4.1.3 (2) Fixed assets: PIM and chaining (part 2)

Step two. Conversion of constant prices \rightarrow current replacement costs
Step 2 is necessary for valuation according to ESA. This requires
a) price statistics (as in step 1) broken down by asset type ... in order to "inflate" assets to uniformly valued at current price level, and
b) price indices that ideally measure the price trend in a way where successive periods are comparable, or in other word 'pure price comparison" is required.

Destatis' opinion

In traditional fixed price base approach "the price trend between the current year and the base year for prices is represented exactly, whereas, the price trend in the previous year's comparison can be ascertained only to a limited extent owing to the changing weighting".

Thus: chain indices do not provide a pure price comparison.
and five questions \rightarrow
4.1.3 (3) Fixed assets: PIM and chaining (part 3)

Destatis' questions

a) "... is it methodologically admissible to make the usual calculations of the capital stock ... using capital formation time series ... which were obtained by the chaining of capital formation at previous years' prices?
b) How should the 'volume' component be interpreted?" In particular: how the "deviations not only in the volume component, but also in the resulting replacement cost valuation" in contrast to the traditional method.*
c) How can consistency be checked in the light of the multidimensionality of the calculations of the consumption of fixed capital and the calculations of the fixed capital by asset types, industry, sector and market and non-market producers, if there is no additivity across the various dimensions?
d) Have other countries considered this problem, or do they perhaps not perceive this as a problem at all?
e) What solution is adopted in countries which already calculate the volume at previous year's prices?

* the issue was explicitly declared being not a technical one but rather a methodological (conceptual) one.

4.2 (1) USA: CPI and C-CPI of the BLS (based on Greenlees + Williams [GW])

BLS started in 2002 with two

1. More frequent (biennial) updates of expenditure weights of the Headline CPI-U*, formula: low level: weighted geometric upper: Lowe formula Widely used for indexation because unlike C-CPI-U not subject to revisions

Weight updates since Dec. 1998: every two years

since	weights
2002	$1999-2000$
	$2001-2002$
	$2003-2004$
2008	$2005-2006$

*all urban consumers CPI-U (\neq CPI-W)

2. Chained CPI: C-CPI-U
weights: current and previous month (?)
preliminary monthly chained index; formula : "geometric Young" elementary indices and weights like CPI-U Because of unavoidable lags in expenditure data subject to two annual revisions

4.2 (2) USA: Study of Greenlees and Williams

Lowe formula

(weight base b $<$ price base 0)

$$
P_{t, 0, b}^{L o}=\sum_{i} \frac{p_{i t}}{p_{i 0}} \frac{p_{i 0} q_{i b}}{\sum p_{i 0} q_{i b}}=\sum_{i} \frac{p_{i t}}{p_{i 0}} \cdot s_{i, 0 b}=\frac{\sum p_{i t} q_{i b}}{\sum p_{i 0} q_{i b}}
$$

Laspeyres: $\mathrm{b}=0$; the bounding result $\mathrm{P}^{\mathrm{L}}>\mathrm{COLI}>\mathrm{P}^{\mathrm{P}}$ does not apply to Lowe b $<0<\mathrm{t}$

The importance of price updating increases with the distance between b an 0 (currently 2 years in USA)
As opposed to Lowe index the
Young index does not involve price updating of weights

$$
\mathrm{P}_{\mathrm{t}, \mathrm{~b}, \mathrm{~b}}^{\mathrm{Y}}=\sum_{\mathrm{i}} \frac{\mathrm{p}_{\mathrm{it}}}{\mathrm{p}_{\mathrm{i} 0}} \frac{\mathrm{p}_{\mathrm{ib}} \mathrm{q}_{\mathrm{ib}}}{\sum \mathrm{p}_{\mathrm{ib}} \mathrm{q}_{\mathrm{ib}}}=\sum_{\mathrm{i}} \frac{\mathrm{p}_{\mathrm{it}}}{\mathrm{p}_{\mathrm{i} 0}} \cdot \mathrm{~s}_{\mathrm{i}, \mathrm{bb}}
$$

$\mathrm{G}+\mathrm{W}$ studied a number of experimental indices $\mathbf{I}(\mathbf{L}, \mathbf{A}, \mathbf{F})$ by varying the parameters
$\mathrm{I}=$ index formula (direct: Young Y, Lowe L, chained: C)
$\mathrm{L}=$ length of weight reference period in months (e.g. 2 years, 1 year, 2 months)
A = age of weights (collection and processing lag) in months
$\mathrm{F}=$ frequency of updating ($24=$ biennial; number of months between updates)

1. "more recent ($\mathrm{A} \downarrow$) expenditure weights would typically have a downward effect"
2. "the evidence of substitution behaviour supports research on accelerated expenditure weight updates in the CPI-U" (substitution matters)
3. $\mathrm{L} \downarrow$ does not lead to more volatile indexes
4. most influential parameter: move to chain approach
5. "reducing the processing lag (A) could be as or more effective than" F
4.2 (3) Study of Greenlees and Williams: annual indices

$\mathrm{CPI}=\mathrm{I}(\mathrm{L}, \mathrm{A}, \mathrm{F})=\operatorname{Lowe}(24,24,24)$
$\mathrm{LA}=\operatorname{Lowe}(12,18,12)$
$\mathrm{C}-\mathrm{CPI}=$ chained Törnquist $(1,1,1)$

Note: the variations of L, A, F in indices were only simulations (experiments) in retrospect. Due to data problems they cannot be performed in real time.
4.2 (4) Greenlees and Williams quarterly indices

Figure 1. Simulated Indexes With Fixed Lag Lengths

4.2 (5) Summary of Greenlees and Williams

Summary of the G+W message:
The superlative chained Törnquist C-CPI is used as the standard against which alternative formulas and operations concerning L, A, and F are judged.
Both $\mathrm{A} \downarrow$ and $\mathrm{F} \downarrow$ and in particular chaining brings an index closer to the C-CPI
"Even countries that do not accept the COLI as the conceptual objective for the CPI, however, often recognize the advantages of superlative indexes. Therefore, our overall result that more timely weights are likely to reduce the gap between a CPI and a superlative index should be of broad relevance"

For other observations (USA, Canada, Japan) concerning the relevance of frequent updating of weights see Eiglsperger + Schackis, p. 8

4.3 (1) Experiences: Does chaining matter empirically?

In former days attempts were not infrequently made to compare results gained by direct methods to those gained by chain methods.

Now, as a decision is made to use chain indices such studies would be more or less a waste of time.

The relevance of an as speedy as possible update of weights seems to be a bit exaggerated: According to the German National CPI the difference between annual inflation rates for 2006 and 2007 was only about 0.1 percentage points depending on whether weights of the year 2000 or of the year 2005 were used.

According to
Schreyer, however, "chaining matters".
He quotes Italian figures: growth of GDP volume (percentage) using different deflators

Period	P^{P}	$\mathrm{PL}_{\text {ch }}$	$\mathrm{P}_{\text {ch }}$	$\mathrm{P}^{\mathrm{P}} \mathrm{Ch}$
$1992-95$	1.40	1.49	1.44	1.38
$1995-98$	1.64	1.59	1.58	1.56
$1999-01$	2.32	2.43	2.39	2.34

$\mathrm{P}^{\mathrm{P}}=$ direct Paasche resulting in $\mathrm{QL} ; \mathrm{P}^{\mathrm{L}} \mathrm{ch}=$ Laspeyres chain etc.

4.3 (2) Experiences: Does chaining matter empirically?

Schreyer also quoted UK figures, which he thinks reflect the substitution bias. They refer to GDP "at constant prices" (\%change on previous year)

	L-ch	F-ch	L-dir
87	5,0	5,0	4,7
88	5,2	5,2	4,9
89	2,8	2,7	2,4
90	0,8	0,7	0,7
91	$-2,2$	$-2,1$	$-2,2$
92	$-0,4$	$-0,5$	$-0,4$
93	2,1	2,1	2,2
94	3,6	3,5	4,0
95	2,3	2,2	2,5

Schreyer highlighted this field as indicating a high substitution bias

However, he did not say that the red fields above indicate an irrational substitution

5.1 (1) Types of aggregation and usage of the term "additivity"

A1*: additivity (linearity) of the function
 (linearity of a deflator in current period prices)

how a global index can be decomposed into sector indices, or the sector indices can be aggregated to a global index

A1: aggregative consistency of the index function, ACF one stage and multistage compilation of the index yield the same result
whether the deflator provides volumes of subaggregates that can be summed up like values

A2: structural consistency of volumes (in deflation), SCV = quantity (volume) index is linear in the quantities. SCV can only be requires using direct Paasche price indices as deflators all other deflators (direct or chain) violate SCV
this can easily be shown \Rightarrow
5.1 (2) Relations between aggregations concepts


```
aggregative consistency A1
but not linear:
quadratic mean, log-Laspeyres, Walsh
```

linear (A1*): Laspeyres, Paasche, Marshal-Edgeworth
not even aggregative consistency, let alone linearity:
Fisher's "ideal" index* (of course also all sorts of chain indices)

Relevance of criterion A1 (aggregative consistency):

1. aggregations in $1,2,3, \ldots$ steps over various aggregation levels to the all-item-index are consistent.
2. it enables users of statistics to construct their own "experimental" indices with or without certain sub-aggregates.

One might conjecture that aggregative consistency is automatically given once an index can be written as average (mean) of price relatives (mean value property). This is not true \Rightarrow

* in 5.3 we show that Fisher's "ideal" index is anything but ideal

5.1 (3) Aggregative consistency and mean value property

An index of Drobisch, the arithmetic mean of P^{L} and $\mathrm{P}^{\mathrm{P}}, \quad \mathrm{P}_{0 \mathrm{t}}^{\mathrm{DR}}=\frac{1}{2}\left(\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}+\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}\right)$
is a mean of price relatives
$P_{0 t}^{D R}=\frac{1}{2}\left[\left(\sum_{i=1}^{n} \frac{p_{i t}}{p_{i 0}} g_{i}\right)+\left(\sum_{i=1}^{n} \frac{p_{i t}}{p_{i 0}} w_{i}\right)\right]=\frac{1}{2}\left(P_{0 t}^{L}+P_{0 t}^{P}\right)=\sum_{i=1}^{n} \frac{p_{i t}}{p_{i 0}} \frac{g_{i}+w_{i}}{2}$
Hence $P^{D R}$ is clearly an arithmetic mean (unlike Fisher's index) with weights $\left(g_{i}+w_{i}\right) / 2$.
With n commodities grouped into two sub-indices, such that $\mathrm{j}=1, \ldots, \mathrm{~m}$ belongs to group A, and $k=m+1, \ldots, n$ to group B respectively we have
$P_{0 t}^{D R}=\frac{1}{2}\left[\left(\sum_{j}^{m} \frac{p_{j t}}{p_{j 0}} g_{j}^{*}\right) \sum_{j}^{m} g_{j}+\left(\sum_{k}^{n} \frac{p_{k t}}{p_{k 0}} g_{k}^{*}\right) \sum_{k}^{n} g_{k}+\left(\sum_{j}^{m} \frac{p_{j t}}{p_{j 0}} w_{j}^{*}\right) \sum_{j}^{m} w_{j}+\left(\sum_{k}^{n} \frac{p_{k t}}{p_{k 0}} w_{k}^{*}\right) \sum_{k 1}^{n} w_{k}\right]$
$\mathrm{g}_{\mathrm{j}}^{*}=\mathrm{g}_{\mathrm{j}} / \sum_{\mathrm{j}} \mathrm{g}_{\mathrm{j}}$ and $\mathrm{g}_{\mathrm{k}}^{*}, \mathrm{w}_{\mathrm{j}}^{*}, \mathrm{w}_{\mathrm{k}}^{*} \quad$ correspondingly. Using
$\mathrm{P}_{0 \mathrm{t}}^{\mathrm{DR}}=\frac{1}{2}\left[\mathrm{P}_{0 \mathrm{t}}^{\mathrm{LA}} \mathrm{g}_{\mathrm{A}}+\mathrm{P}_{0 \mathrm{t}}^{\mathrm{LB}} \mathrm{g}_{\mathrm{B}}+\mathrm{P}_{0 \mathrm{t}}^{\mathrm{PA}} \mathrm{w}_{\mathrm{A}}+\mathrm{P}_{0 \mathrm{t}}^{\mathrm{PB}} \mathrm{w}_{\mathrm{B}}\right] \quad \mathrm{P}_{0 \mathrm{t}}^{\mathrm{DRA}}=\frac{1}{2}\left(\mathrm{P}_{0 \mathrm{t}}^{\mathrm{LA}}+\mathrm{P}_{0 \mathrm{t}}^{\mathrm{PA}}\right) \quad \mathrm{P}_{0 \mathrm{t}}^{\mathrm{DRB}}$ analogously $P_{0 t}^{D R}=P_{0 t}^{D R A}+P_{0 t}^{D R B}-\frac{1}{2}\left[P_{0 t}^{L A} g_{B}+P_{0 t}^{L B} g_{A}+P_{0 t}^{P A} W_{B}+P_{0 t}^{P B} W_{A}\right]$ which is in general not equal to $\quad P_{0 t}^{D R A}\left(\frac{g_{A}+w_{A}}{2}\right)+P_{0 t}^{D R B}\left(\frac{g_{B}+w_{B}}{2}\right) \quad$ unless $g_{A}=g_{B}=w_{A}=w_{B}=1 / 2$.
5.1 (4) Structural consistency (additivity) of volumes (with direct Paasche deflation only)

Let $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{K}}$ denote values (aggregates at current prices) referring to sub-aggregate 1 to K , and V_{T} to the total (T) aggregate respectively, such that by definition

$$
\mathrm{V}_{1}+\mathrm{V}_{2}+\ldots+\mathrm{V}_{\mathrm{K}}=\sum \mathrm{V}_{\mathrm{k}}=\mathrm{V}_{\mathrm{T}} \quad \mathrm{k}=1,2, \ldots, \mathrm{~K}
$$

Each volume is defined by dividing a value by its corresponding price index (deflator), P_{1}, $\mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{K}}$. To satisfy SCV the following equation has to hold for P_{T}, the "total deflator"
$\underline{\mathrm{V}_{1}}+\ldots \frac{\mathrm{V}_{\mathrm{K}}}{\mathrm{V}_{\mathrm{T}}} \quad$ Next consider value shares (or "weights") w_{k} to describe the fact that total value V_{T} is broken down into K values of sub-aggregates
$\frac{\mathrm{w}_{1} \mathrm{~V}_{\mathrm{T}}}{\mathrm{P}_{1}}+\ldots+\frac{\mathrm{w}_{\mathrm{K}} \mathrm{V}_{\mathrm{T}}}{\mathrm{P}_{\mathrm{K}}}=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{P}_{\mathrm{T}}} \quad$ where $\mathrm{w}_{\mathrm{k}}=\frac{\mathrm{V}_{\mathrm{k}}}{\mathrm{V}_{\mathrm{T}}} \quad$ upon division by V_{T} we get which simply means that P_{T} has to be a weighted

$$
\mathrm{w}_{1} \frac{1}{\mathrm{P}_{1}}+\ldots+\mathrm{w}_{\mathrm{K}} \frac{1}{\mathrm{P}_{\mathrm{K}}}=\frac{1}{\mathrm{P}_{\mathrm{T}}}
$$ harmonic mean of sectoral indices (deflators) with weights being value shares see also double deflation (sec. 6.1 (3))

The only deflator price index capable of producing structurally consistent volumes at all levels of aggregation is the direct Paasche index (as this index is based on a harmonic mean of price relatives or sub-indices [sectoral deflators] respectively). Above is a "uniqueness theorem"
5.2.1 The notion of additivity (linearity of a quantity index)

theorem of Aczel and Eichhorn (1974)
Additivity in current period quantities
$\mathrm{Q}\left(\mathbf{q}_{0}, \mathbf{q}_{\mathrm{t}}^{*}\right)=\mathrm{Q}\left(\mathbf{q}_{0}, \mathbf{q}_{\mathrm{t}}\right)+\mathrm{Q}\left(\mathbf{q}_{0}, \mathbf{q}_{\mathrm{t}}^{+}\right)$

$$
\text { where } \quad \mathbf{q}_{\mathrm{t}}^{*}=\mathbf{q}_{\mathrm{t}}+\mathbf{q}_{\mathrm{t}}^{+}
$$

Additivity in base period quantities
$\frac{1}{\mathrm{Q}\left(\mathbf{q}_{0}^{*}, \mathbf{q}_{\mathrm{t}}\right)}=\frac{1}{\mathrm{Q}\left(\mathbf{q}_{0}, \mathbf{q}_{\mathrm{t}}\right)}+\frac{1}{\mathrm{Q}\left(\mathbf{q}_{0}^{+}, \mathbf{q}_{\mathrm{t}}\right)}$ where $\mathbf{q}_{0}^{*}=\mathbf{q}_{0}+\mathbf{q}_{0}^{+}$

Neither direct Q^{F} nor any chain index (resulting from chain deflators) is additive

* Diewert, Lecture Notes chapter 3, p. 14 ff ** v.d.Lippe (2007), p. 193

The overall percentage change in the aggregate from 0 to t can be decomposed into contributions of the percentage change of individual items
where

$$
\mathrm{w}_{\mathrm{i}}=\mathrm{p}_{\mathrm{i}}^{*} \mathrm{q}_{\mathrm{i} 0} / \sum \mathrm{p}_{\mathrm{i}}^{*} \mathrm{q}_{\mathrm{i} 0}
$$

Further considerations of Diewert

1) additional restrictions $\rightarrow \mathrm{Q}^{\mathrm{W}}$ (Walsh as pure Q-index)
2) W_{i} (additive decomposition) in the case of Q^{F}

5.2.2 (1) Theorem on linear indices (two price indices) of L. v. Bortkiewicz

The following generalized theorem of Bortkiewicz proved extremely useful
two linear indices $X_{0}=\frac{\sum \mathrm{x}_{\mathrm{t}} \mathrm{y}_{0}}{\sum \mathrm{x}_{0} \mathrm{y}_{0}} \quad \mathrm{X}_{\mathrm{t}}=\frac{\sum \mathrm{x}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}}}{\sum \mathrm{x}_{0} \mathrm{y}_{\mathrm{t}}}$
relatives x_{l} / x_{0} and y_{t} / y_{0} respectively (for example $x_{l} / x_{0}=p_{t} / p_{0}$ and $\left.y_{l} / y_{0}=q_{\imath} / q_{0}\right) *$ are averaged using weights $w_{0}=x_{0} y_{0} / \Sigma$ $\mathrm{x}_{0} \mathrm{y}_{0}$ give

$$
\overline{\mathrm{X}}=\mathrm{X}_{0} \quad \overline{\mathrm{Y}}=\frac{\sum \mathrm{y}_{\mathrm{t}} \mathrm{x}_{0}}{\sum \mathrm{y}_{0} \mathrm{x}_{0}}
$$

and
variances

$$
\mathrm{s}_{\mathrm{x}}^{2}=\Sigma\left(\frac{\mathrm{x}_{\mathrm{t}}}{\mathrm{x}_{0}}-\overline{\mathrm{X}}\right)^{2} \mathrm{w}_{0} \quad \mathrm{~s}_{\mathrm{y}}^{2}=\Sigma\left(\frac{\mathrm{y}_{\mathrm{t}}}{\mathrm{y}_{0}}-\overline{\mathrm{Y}}\right)^{2} \mathrm{w}_{0}
$$

and the covariance

$$
\mathrm{s}_{\mathrm{xy}}=\sum\left(\frac{\mathrm{x}_{\mathrm{t}}}{\mathrm{x}_{0}}-\overline{\mathrm{X}}\right)\left(\frac{\mathrm{y}_{\mathrm{t}}}{\mathrm{y}_{0}}-\overline{\mathrm{Y}}\right) \mathrm{w}_{0}=\frac{\sum \mathrm{x}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}}}{\sum \mathrm{x}_{0} \mathrm{y}_{0}}-\overline{\mathrm{X}} \cdot \overline{\mathrm{Y}}
$$

so that the relation between the two indices is given by

$$
\frac{\mathrm{X}_{\mathrm{t}}}{\mathrm{X}_{0}}=1+\mathrm{r}_{\mathrm{xy}} \mathrm{~V}_{\mathrm{x}} \mathrm{~V}_{\mathrm{y}}=1+\frac{\mathrm{s}_{\mathrm{xy}}}{\overline{\mathrm{X}} \cdot \overline{\mathrm{Y}}}
$$

* this specification gives the famous relation between P^{L} and P^{P}
we made use of the theorem in sec. 3.5.3
5.2.2 (2) Theorem L. v. Bortkiewicz and the drift D ${ }^{\text {PL }}$ of the Laspeyres price index

The theorem of Bortkiewicz is particularly useful if written this way

1) If X_{t} and X_{0} are price indices (using quantity weights y_{0} or y_{t} respectively) then $\Sigma \mathrm{y}_{\mathrm{t}} \mathrm{x}_{0} / \Sigma \mathrm{y}_{\mathrm{t}} \mathrm{x}_{0}$ must be a quantity index (Y_{0} type)
2) If $s_{x y}<\boldsymbol{0}$ then $\mathbf{X}_{\mathbf{0}}>\mathbf{X}_{t}\left(X_{0}\right.$ Laspeyres, X_{t} Paasche) if $s_{x y}>\boldsymbol{0}$ then $\mathbf{X}_{\mathbf{0}}<\mathbf{X}_{t}$

The theorem does not apply to products of linear indices (as eg. chain indices of the drift). We can, however, examine the change of a drift. Using

$$
\begin{aligned}
\mathrm{P}_{02}^{\mathrm{L}} & =\frac{\sum \mathrm{p}_{1} \mathrm{q}_{0}}{\sum \mathrm{p}_{0} \mathrm{q}_{0}} \frac{\sum \mathrm{p}_{2} \mathrm{q}_{0}}{\sum \mathrm{p}_{1} \mathrm{q}_{0}}=\mathrm{P}_{01}^{\mathrm{L}} \mathrm{P}_{02(1)}^{\mathrm{L}}=\mathrm{g}_{1}^{0} \mathrm{~g}_{2}^{0} \quad \text { and } \\
\overline{\mathrm{P}}_{02}^{\mathrm{L}} & =\frac{\sum \mathrm{p}_{1} \mathrm{q}_{0}}{\sum \mathrm{p}_{0} \mathrm{q}_{0}} \frac{\sum \mathrm{p}_{2} \mathrm{q}_{1}}{\sum \mathrm{p}_{1} \mathrm{q}_{1}}=\mathrm{P}_{01}^{\mathrm{L}} \mathrm{P}_{12}^{\mathrm{L}}=\mathrm{g}_{1}^{0} \mathrm{~g}_{2}^{1} \quad \begin{array}{l}
\text { hence we } \\
\text { the differ }
\end{array}
\end{aligned}
$$

\qquad
5.2.2 (3) Theorem L. v. Bortkiewicz, drift and Hill's theory of the PLS (Paasche-Lasp.-Spread)

$$
\begin{gathered}
\mathrm{X}_{0}=\mathrm{P}_{02(1)}^{\mathrm{L}}=\mathrm{P}_{02}^{\mathrm{L}} / \mathrm{P}_{01}^{\mathrm{L}}=\sum \mathrm{p}_{2} \mathrm{q}_{0} / \sum \mathrm{p}_{1} \mathrm{q}_{0}=\mathrm{g}_{2}^{0} \quad \text { and } \\
\mathrm{X}_{\mathrm{t}}=\mathrm{P}_{12}^{\mathrm{L}}=\sum \mathrm{p}_{2} \mathrm{q}_{1} / \sum \mathrm{p}_{1} \mathrm{q}_{1}=\mathrm{g}_{2}^{1}
\end{gathered}
$$

The covariance $s_{x y}=\sum\left(\frac{p_{2}}{p_{1}}-\bar{X}\right)\left(\frac{q_{1}}{q_{0}}-\bar{Y}\right) \frac{p_{1} q_{0}}{\sum p_{1} q_{0}}=\bar{Y}\left(X_{t}-X_{0}\right)$
is responsible for the difference between X_{t} an X_{0} and the drift $D_{02}^{P L}=\frac{\bar{P}_{02}^{L}}{P_{02}^{L}}=\frac{g_{2}^{1}}{g_{2}^{0}}=\frac{X_{t}}{X_{0}}$ negative covariance: $\overline{\mathrm{P}}_{02}^{\mathrm{L}}<\mathrm{P}_{02}^{\mathrm{L}} \quad$ drift down (prices rise/fall in 2 in response to less/more q in 1)
positive covariance: $\overline{\mathrm{P}}_{02}^{\mathrm{L}}>\mathrm{P}_{02}^{\mathrm{L}} \quad$ drift upwards (prices and quantities move in the same direction)

It is not so easy to study the Paasche drift D^{PP} or the Laspeyres-Paasche Gap between direct indices (γ) or chain indices because the change of $D^{P P}$ or γ is already a matter of more then two indices.
5.3 (1) Fisher's ideal and superlative index far from "ideal": no aggregative consistency

Aggregation of the index formula

Direct Laspeyres and Paasche aggregate price relatives (sub-indices) $a_{0 t}^{i}=\frac{p_{i t}}{p_{i 0}}$
$\begin{array}{ll}\text { using weights } g_{i} \text { or } w_{i} \text { respectively } & g_{i}=\frac{p_{i 0} q_{i 0}}{\sum_{i n} p_{i 0} q_{i 0}}\end{array} \quad w_{i}=\frac{p_{i 0} q_{i t}}{\sum_{i=1} p_{i 0} q_{i t}}$
(*) $P_{0 t}^{\mathrm{F}}=\sqrt{\left(\mathrm{g}_{1} \mathrm{a}_{0 \mathrm{t}}^{1}+\mathrm{g}_{2} \mathrm{a}_{0 \mathrm{t}}^{2}+\ldots+\mathrm{g}_{\mathrm{n}} \mathrm{a}_{0 \mathrm{t}}^{\mathrm{n}}\right)\left(\mathrm{w}_{1} \mathrm{a}_{0 \mathrm{t}}^{1}+\mathrm{w}_{2} \mathrm{a}_{0 \mathrm{t}}^{2}+\ldots+\mathrm{w}_{\mathrm{n}} \mathrm{a}_{0 \mathrm{t}}^{\mathrm{n}}\right)} \quad \mathrm{n}$ goods
or $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{F}}=\sqrt{\left(\mathrm{g}_{1} \mathrm{P}_{0 \mathrm{t}}^{\mathrm{LI}}+\mathrm{g}_{2} \mathrm{P}_{0 \mathrm{t}}^{\mathrm{L} 2}+\ldots+\mathrm{g}_{\mathrm{K}} \mathrm{P}_{0 \mathrm{t}}^{\mathrm{LK}}\right)\left(\mathrm{w}_{1} \mathrm{P}_{0 \mathrm{t}}^{\mathrm{Pl}}+\mathrm{w}_{2} \mathrm{P}_{0 \mathrm{t}}^{\mathrm{P} 2}+\ldots+\mathrm{w}_{\mathrm{K}}{ }_{0 t}^{\mathrm{PK}}\right)}$ over K sub-aggregates
this, however, is not an aggregation over K subindices of Fisher $\mathrm{k}=1,2, \ldots, \mathrm{~K}$
$\sqrt{\left(\mathrm{g}_{1} \mathrm{P}_{0 \mathrm{t}}^{\mathrm{Fl}}+\mathrm{g}_{2} \mathrm{P}_{0 \mathrm{t}}^{\mathrm{F} 2}+\ldots+\mathrm{g}_{\mathrm{K}} \mathrm{P}_{0 \mathrm{t}}^{\mathrm{FK}}\right)\left(\mathrm{w}_{1} \mathrm{P}_{0 \mathrm{t}}^{\mathrm{F} 1}+\mathrm{w}_{2} \mathrm{P}_{0 \mathrm{t}}^{\mathrm{F} 2}+\ldots+\mathrm{w}_{\mathrm{K}} \mathrm{P}_{0 \mathrm{t}}^{\mathrm{FK}}\right)}$
using sectoral Fisher indices $\quad P_{0 t}^{\mathrm{Fk}}=\sqrt{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{Lk}} \mathrm{P}_{0 \mathrm{t}}^{\mathrm{Pk}}}$
P^{F} does not even meet the equality test $\quad P_{0 t}=f\left(P_{0 t}^{1}, P_{0 t}^{2}, \ldots, P_{0 t}^{K}\right)=f(\lambda, \lambda, \ldots, \lambda)=\lambda$

5.3 (2) Fisher's ideal index far from "ideal": aggregation

The equality test requires $P_{0 t}=f\left(P_{0 t}^{1}, P_{0 t}^{2}, \ldots, P_{0 t}^{K}\right)=f(\lambda, \lambda, \ldots, \lambda)=\lambda$ or: if all sectoral indices P^{k} are equal λ, then the global index should yield $=\lambda$.

It can easily be seen that Fisher's index fails this "weak aggregation test" because two different procedures of taking an average are involved

Example

Consider two commodities and weights $\mathrm{g}_{1}=0.6$, (consequently $\mathrm{g}_{2}=0.6$) and $\mathrm{w}_{1}=0.4$, $\left(\mathrm{w}_{2}=0.6\right)$ and assume sectoral indices $\mathrm{P}^{\mathrm{L} 1}=1.25, \mathrm{P}^{\mathrm{Pl}}=1.2$ and $\mathrm{P}^{\mathrm{L} 2}=2, \mathrm{P}^{\mathrm{P} 2}=0.75$

1. The sectoral Fisher indices are equal $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{Fl}}=\mathrm{P}_{0 \mathrm{t}}^{\mathrm{F2}}=\sqrt{1.25 \cdot 1.2}=\sqrt{2 \cdot 0.75}=\sqrt{1.5}$
2. The total Fisher index requires P^{L} and P^{P} that is $P_{0 t}^{\mathrm{F}}=\sqrt{\left(g_{1} \mathrm{P}_{0 t}^{\mathrm{L1}}+\mathrm{g}_{2} \mathrm{P}_{0 t}^{\mathrm{L} 2}\right)\left(\mathrm{w}_{1} \mathrm{P}_{0 \mathrm{t}}^{\mathrm{P1}}+\mathrm{w}_{2} \mathrm{P}_{0 \mathrm{t}}^{\mathrm{P} 2}\right)}$
giving $\sqrt{1.55 \cdot 0.93}=\sqrt{1.4415} \quad$ which is unequal $\sqrt{1.5}$
In 1 an unweighted geometric mean is taken, in 2 a weighted arithmetic mean for P^{L} and P^{P}
5.3 (3) Fisher's ideal index not a good index

2) no simple function exists by which sectoral indices of P^{F}-type can be aggregated to a total P^{F}-index

Moreover: more difficulties in compiling this index (compared with P^{L})
Exactly the same defects are given in the case of chain indices
6.1 (1) Task of "deflation" (a useful distinction concerning types of aggregates/deflations)

	Deflation of aggregates
in volume terms "at constant prices"	in real (income) terms at constant purchasing power of money
Volume - approach (quantity interpretation of the result intended): isolation of the quantity component	Real - income- approach (adjusting income for inflation): estimate (adjust for) the effect of inflation
Applicable to value changes only, that can be decomposed into price- and quantitychanges, i.e. to commodity flows (CFs)	Applicable also to values that do not have price and quantity dimensions on their own, i.e. to non-commodity flows (NCFs)
Deflate aggregates $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{m}}$ by using m price indices $P_{i}(i=1, \ldots, m)$ for the m aggregates (P_{i} for commodities in A_{i})	Deflate aggregates $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{m}}$ (all or many of them NCFs) using one single deflator (for the general inflation)
Double deflation (of a difference)	Choice of the (general) deflator

6.1 (2) different methods and concepts of deflation (deflation and price level measurement)

Price level (inflation) measurement and deflation are

6.1 (3) Remark on "Double deflation" with direct Paasche indices (deflators)

(t, t) denote nominal aggregates $\left(\Sigma \mathrm{q}_{\mathrm{t}} \mathrm{p}_{\mathrm{t}}\right)$
$(\mathrm{t}, 0)$ denote real aggregates $\left(\Sigma \mathrm{q}_{\mathrm{t}} \mathrm{p}_{0}\right)$

$$
\mathrm{O}=\text { output, } \mathrm{I}=\text { input, } \mathrm{Y}=\text { value added }
$$

$$
\begin{aligned}
& \mathrm{Y}(\mathrm{t}, 0)=\frac{\mathrm{O}(\mathrm{t}, \mathrm{t})}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}(\mathrm{O})}-\frac{\mathrm{I}(\mathrm{t}, \mathrm{t})}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}(\mathrm{I})}=\mathrm{O}(\mathrm{t}, 0)-\mathrm{I}(\mathrm{t}, 0) \quad \text { by definition! Rearranging gives } \\
& \frac{\mathrm{O}(\mathrm{t}, \mathrm{t})}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}(\mathrm{O})}=\frac{\mathrm{Y}(\mathrm{t}, \mathrm{t})}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{mp}}(\mathrm{Y})}+\frac{\mathrm{I}(\mathrm{t}, \mathrm{t})}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}(\mathrm{I})} \quad \text { upon division by } \\
& \mathrm{O}(\mathrm{t}, \mathrm{t}) \text { and using } i=\frac{\mathrm{I}(\mathrm{t}, \mathrm{t})}{0(\mathrm{t}, \mathrm{t})} \quad \text { imp }=\text { implicit }
\end{aligned}
$$

$$
\frac{1}{\mathrm{P}_{0 t}^{\mathrm{P}}(\mathrm{O})}=\mathrm{i} \frac{1}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}(\mathrm{I})}+(1-\mathrm{i}) \frac{1}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{imp}}(\mathrm{Y})}
$$

The output deflator $\mathrm{P}^{\mathrm{P}}(\mathrm{O})$ can be regarded as a weighted harmonic mean of the input deflator $\mathrm{P}^{\mathrm{P}}(\mathrm{I})$ and the implicit value added deflator $\mathrm{P}^{\mathrm{imp}}(\mathrm{Y})$ [both indices $\mathrm{P}(\mathrm{O})$ and $\mathrm{P}(\mathrm{I})$ of Paasche type; the weights being the quotas i and (1-i) respectively]

this result is often found counter-intuitive*: because of | input (I) | value added (Y) |
| :---: | :---: |
| | Output (O) |
| | |

one would expect $\mathrm{P}^{\mathrm{imp}}=\mathrm{P}^{\mathrm{Y}}$ being a mean of P^{O} and P^{I} rather than P^{O} a mean of P^{Y} and P^{I}

* W. Neubauer: Irreales Inlandsprodukt zu konstanten Preisen,... AStA 1974, p. 237

6.1 (4) Remark on "Double deflation" with direct Paasche deflators (2)

It is in particular possible that both indices $\mathrm{P}(\mathrm{O})$ and $\mathrm{P}(\mathrm{I})$ indicate a rise while $\mathrm{P}(\mathrm{Y})$ is showing a decline of prices. Example $\mathrm{i}=0.7, \mathrm{P}(\mathrm{O})=1.2$ and $\mathrm{P}(\mathrm{I})=1.4$ then
$\frac{1}{P_{0 t}^{P}(\mathrm{O})}=\mathrm{i} \frac{1}{\mathrm{P}_{0 t}^{\mathrm{P}}(\mathrm{I})}+(1-\mathrm{i}) \frac{1}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{imp}}(\mathrm{Y})}$ results in $\mathrm{P}(\mathrm{Y})=0.9$. Due to $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{imp}}=\frac{(1-\mathrm{i}) \mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}(\mathrm{I}) \mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}(\mathrm{O})}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}(\mathrm{I})-i \mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}(\mathrm{O})}$
it is also possible that the implicit value-added-deflator is negative, indicating a negative "real" value added (VA). Example: $\mathrm{i}=0.7, \mathrm{P}(\mathrm{O})=2.1$ and $\mathrm{P}(\mathrm{I})=0.8$ then $\mathrm{P}(\mathrm{Y})=-0.7522$.

What seems to be absurd is not so, however, considering the international rather than intertemporal case. After the German reunification many East-German (GDR) deflated VAs became negative, indicating that a production might be efficient at GDR prices, but would be no longer be profitable at West German prices.

Direct Fisher price index as deflator makes things more complicated

$$
\begin{aligned}
& \frac{1}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}(\mathrm{O})}=\mathrm{i} \frac{1}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}(\mathrm{I})} \mathrm{R}_{1}+(1-\mathrm{i}) \frac{1}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{imp}(\mathrm{~F})}(\mathrm{Y})} \mathrm{R}_{2} \\
& \text { where } \quad \mathrm{R}_{1}^{2}=\mathrm{R}_{2}^{2}\left[\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}(\mathrm{I}) / \mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}(\mathrm{I})\right] \\
& \text { and } \quad \mathrm{R}_{2}^{2}=\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}(\mathrm{O}) / \mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}(\mathrm{O})
\end{aligned} \begin{aligned}
& \text { Paasche/ } \\
& \begin{array}{l}
\text { Laspeyres } \\
\text { ratio }
\end{array}
\end{aligned}
$$

The sum of the weights $\mathrm{i}_{1}+(1-\mathrm{i}) \mathrm{R}_{2} \neq 1$, and R_{2} becomes important later $\Rightarrow \mathbf{6 . 4 . 1}$ (slide 52)
6.2.1 (1) Different notions of "volume"

Sequence of volumes (monetary terms in €)
Should they be published in addition to indices? How should they be called? \Rightarrow

$\underset{\substack{\text { (Paditional } \\ \text { (Pasche direct) }}}{\text { tradithe }}$	$\sum_{\text {here we rightly speak of "at constant prices" }} \mathrm{q}_{1} \mathrm{p}_{0}$	$\sum \mathrm{q}_{2} \mathrm{p}_{0}$	$\mathrm{t}=3$	general the base period)

at previous year prices

$$
\sum \mathrm{q}_{1} \mathrm{p}_{0} \quad \sum \mathrm{q}_{2} \mathrm{p}_{1}
$$

$$
\sum \mathrm{q}_{3} \mathrm{p}_{2}
$$

$$
\sum \mathrm{q}_{\mathrm{t}} \mathrm{p}_{\mathrm{t}-1}
$$

new method "chained volumes"(?) updated using $\xrightarrow[\begin{array}{l}\text { chain indices) } \\ \text { here: a chain Paasche } \\ \text { index (for other chain }\end{array}]{\text { general }} \sum \mathrm{q}_{1} \mathrm{p}_{0} \frac{\sum \mathrm{q}_{2} \mathrm{p}_{1}}{\sum \mathrm{q}_{1} \mathrm{p}_{1}} \frac{\sum \mathrm{q}_{3} \mathrm{p}_{2}}{\sum \mathrm{q}_{2} \mathrm{p}_{2}} \frac{\sum \mathrm{q}_{4} \mathrm{p}_{3}}{\sum \mathrm{q}_{3} \mathrm{p}_{3}} \ldots \frac{\sum \mathrm{q}_{\mathrm{t}} \mathrm{p}_{\mathrm{t}-1}}{\sum \mathrm{q}_{\mathrm{t}-1} \mathrm{p}_{\mathrm{t}-1}}$ index deflators see 6.4.3)
factors resemble those of the AO method (see part III)
6.2.1 (2) Official terms for volumes derived from chain-index-deflation* (in 2007)

country	base $^{* *}$	terminology "for volumes" (2004)
Belgium	2000	in chained 2004 euros
Finland		at reference year 2000 prices
France		chained prices base 2000
Greece		constant prices of the previous year
Ireland	2005	constant market prices (chain linked annually and referenced to year 2005)
Italy		chain-linked volumes 2000 = 100
Netherlands	2000	prices of 2000
Portugal		-at prices of the previous year - chain linked volume data (reference) year = 2000
Denmark		2000 price level chain figures
Sweden		constant prices reference year 2000, chain linked series

[^2]6.2.2 (1) Volumes at previous year prices and (decomposition of) their growth rates

A thought experiment of Tödter (2005): assume two good with constant changes of prices and quantities over time: $\mathrm{p}_{10}=\mathrm{p}_{20}=\mathrm{p}_{0}$ and $\mathrm{q}_{10}=\mathrm{q}_{20}=\mathrm{q}_{0}$. Furthermore
$\mathrm{p}_{1 \mathrm{t}}=\mathrm{p}_{0}(1+\pi)^{\mathrm{t}}, \quad \mathrm{q}_{1 \mathrm{t}}=\mathrm{q}_{0}(1-\pi)^{\mathrm{t}} \quad$ and $\quad \mathrm{p}_{2 \mathrm{t}}=\mathrm{p}_{0}(1-\pi)^{\mathrm{t}}, \quad \mathrm{q}_{1 \mathrm{t}}=\mathrm{q}_{0}(1+\pi)^{\mathrm{t}}$
Tödter: Volumes at prices of the previous year (Vorjahrespreismethode) remain constant (growth rate $=0$ for all t) $Q_{1}=p_{0} q_{0}((1-\pi)+(1+\pi))=2 p_{0} q_{0}=Q_{0}$
wrong: they are

$$
\mathrm{Q}_{2}=2 \mathrm{p}_{0} \mathrm{q}_{0}(1-\pi)(1+\pi)=2 \mathrm{p}_{0} \mathrm{q}_{0}\left(1-\pi^{2}\right)
$$

constantly declining
(though quantities are rising)

$$
\begin{aligned}
\mathrm{Q}_{3}=2 \mathrm{p}_{0} \mathrm{q}_{0}\left(1-\pi^{2}\right)^{2} \\
\mathrm{Q}_{4}=2 \mathrm{p}_{0} \mathrm{q}_{0}\left(1-\pi^{2}\right)^{3}
\end{aligned} \longrightarrow \frac{\mathrm{Q}_{\mathrm{t}}}{\mathrm{Q}_{-1}}=1-\pi^{2}=\mathrm{const}<1
$$

Tödter: Volumes at constant prices of the base year (Festpreismethode) are constantly rising by
this is correct

$$
\begin{array}{ll}
\mathrm{Q}_{1}^{*}=\mathrm{p}_{0} \mathrm{q}_{0}((1-\pi)+(1+\pi))=2 \mathrm{p}_{0} \mathrm{q}_{0} & \mathrm{Q}_{2}^{*}=\mathrm{p}_{0} \mathrm{q}_{0}\left((1-\pi)^{2}+(1+\pi)^{2}\right) \\
\text { re } \quad \sum \mathrm{q}_{1}=\mathrm{q}_{0}((1-\pi)+(1+\pi))=2 \mathrm{q}_{0} & \sum \mathrm{q}_{2}=\mathrm{q}_{0}\left((1-\pi)^{2}+(1+\pi)^{2}\right)
\end{array}
$$

rising at the same
rate as total quantities $\Sigma \mathbf{q}_{\mathrm{t}}$

$$
\frac{Q_{t}^{*}}{Q_{t-1}^{*}}=\frac{\sum q_{t}}{\sum q_{t-1}}=\frac{(1+\pi)^{t}+(1-\pi)^{t}}{(1+\pi)^{t-1}+(1-\pi)^{t-1}}
$$

6.2.2 (2) Volumes at previous year prices: Tödter's formulas $\pi=0.1\left(1-\pi^{2}=0.99\right)$

	at prices of preceding period		constant prices of base period	
t	volume Q	growth rate (\%)	volume Q^{*}	growth rate $(\%)$
1	2	0	2	0
2	1.98	-1	2.02	+1
3	1.9602	-1	2.06	+1.98
4	1.9406	-1	2.1202	+2.92
5	1.9212	-1	2.2010	+3.81
6	1.8830	-1	2.3030	+4.63

the value $\Sigma \mathrm{p}_{\mathrm{t}} \mathrm{q}_{\mathrm{t}}$ (nominal aggregate) is
changing as follows ($\mathrm{V}_{0}=2 \mathrm{p}_{0} \mathrm{q}_{0}$)

$$
\begin{aligned}
& \mathrm{V}_{1}=\Sigma \mathrm{p}_{1} \mathrm{q}_{1}=2 \mathrm{p}_{0} \mathrm{q}_{0}\left(1-\pi^{2}\right)=\left(1-\pi^{2}\right) \mathrm{V}_{0} \\
& \mathrm{~V}_{2}=\Sigma \mathrm{p}_{2} \mathrm{q}_{2}=2 \mathrm{p}_{0} \mathrm{q}_{0}\left(1-\pi^{2}\right)^{2}=\left(1-\pi^{2}\right) \mathrm{V}_{1} \text { etc. }
\end{aligned}
$$

volume at const. prices of $\mathrm{t}=0$
$\frac{\mathrm{Q}_{\mathrm{t}}^{*}}{\mathrm{Q}_{\mathrm{t}-1}^{*}}=(1+\pi) \omega_{\mathrm{t}-1}+(1-\pi)\left(1-\omega_{\mathrm{t}-1}\right)$ growth factor of Q^{*} as weighted average of $(1+\pi)$ and $(1-\pi)$.
$\omega_{t-1}=\frac{(1+\pi)^{t-1}}{(1+\pi)^{t-1}+(1-\pi)^{t-1}} \quad(\pi>0)$
since $\lim _{\mathrm{t} \rightarrow \infty} \omega_{\mathrm{t}-1}=1$
the growth rate tends to $\pi(+10 \%)$
constant prices: volumes develop like quantities (volumes Q^{*} rising while values [and implicit price index] are decreasing)
volumes Q are obviously not constant
volumes Q^{*} at prices of preceding period:
volumes develop like values; implicit price index $=1$
6.3 (1) Criteria for good deflation (in volume terms)

Aim: "volume" as a proxy of "total quantity" (quantities cannot be added, so we volumes as a proxy)

To find criteria (quasi "axioms") consider the following simple situations

Prices	Quantities change at	
	(1) the same* rate ω	(2) different rates
(1) same* rate λ	case 11	case 12
(2) different rates	case 21	case 22

* the case of constant prices/quantities is the special case of $\lambda=1$, or $\omega=1$ respectively
Case 11 is clearly the simplest situation: one would expect volume to change at the rate ω. Volumes should be proportional in the quantities.
We will see what happens in the direct and chain deflator case by means of an example \rightarrow
6.3 (2) Criteria for deflation: case 11 (prices and quantities change at the same rate)

Deflation using direct Fisher price indices yield non-additive volumes. Chain Fisher price indices as deflators are even worse: in addition to non-additivity also proportionality (and thus identity) is violated

Assume that prices of two goods, A and B are rising uniformly by 50% from 0 to 3 , and quantities remain constant such that the value index all direct price indices ($\mathrm{P}, \mathrm{L}, \mathrm{F}$) amount to $\mathbf{1 . 5}$

	period 0		period 1		period 2		period 3	
good	p	q	p	q	p	q	p	q
A	30	5	40	3	50	2	45	5
B	10	15	5	20	10	13	15	15

$\mathrm{P}_{03}^{\mathrm{F}}$ as all other direct indices yields 1.5
$\Sigma \mathrm{p}_{0} \mathrm{q}_{0}=\Sigma \mathrm{p}_{0} \mathrm{q}_{\mathrm{t}}=300$ so the volume should be 300 and the value $\Sigma \mathrm{p}_{\mathrm{t}} \mathrm{q}_{\mathrm{t}}=\Sigma 1.5 \mathrm{p}_{0} \mathrm{q}_{0}=450$

chain index deflators and their volumes

$$
\overline{\mathrm{P}}_{03}^{\mathrm{F}}=1.5 \sqrt{\frac{\sum \mathrm{p}_{1} \mathrm{q}_{0} \sum \mathrm{p}_{2} \mathrm{q}_{1} \sum \mathrm{p}_{0} \mathrm{q}_{2}}{\sum \mathrm{p}_{0} \mathrm{q}_{1} \sum \mathrm{p}_{1} \mathrm{q}_{2} \sum \mathrm{p}_{2} \mathrm{q}_{0}}}=1.5 \sqrt{1.087}=1.564 \quad \begin{aligned}
& \text { according to the chain index } \\
& \text { prices rose by more than } 50 \%
\end{aligned}
$$

and therefore volume: $450 / 1.564=287.71$ instead of 300
6.3 (3) Criteria for deflation: cases $11+12$ (prices change at the same rate)

This defective deflation is caused by the fact that chain price indices fail proportionality (in prices) so chain deflators fail proportionality in the quantities

Though prices changed unanimously by $+50 \%$ and volume remained constant 300 we have

$$
\begin{array}{r}
\overline{\mathrm{P}}_{03}^{\mathrm{p}}=1.5 \frac{\sum \mathrm{p}_{1} \mathrm{q}_{0} \sum \mathrm{p}_{2} \mathrm{q}_{2} \sum \mathrm{p}_{0} \mathrm{q}_{0}}{\sum \mathrm{p}_{0} \mathrm{q}_{1} \sum \mathrm{p}_{1} \mathrm{q}_{2} \sum \mathrm{p}_{2} \mathrm{q}_{0}}=1.354 \longrightarrow \quad \text { volume: } 450 / 1.354=332.35 \\
\overline{\mathrm{P}}_{03}^{\mathrm{L}}=1.807 \Rightarrow 249.03 \quad \overline{\mathrm{P}}_{03}^{\mathrm{ME}}=1.5554 \Rightarrow 289.32
\end{array}
$$

case 12: again $\mathrm{p}_{\mathrm{it}} / \mathrm{p}_{\mathrm{i} 0}=\lambda \quad \forall \mathrm{i}$ but $\mathrm{q}_{\mathrm{it}} / \mathrm{q}_{\mathrm{i} 0}$ may be different
To arrive at a meaningful "volume" it appears reasonable to simply divide $\Sigma \mathrm{p}_{\mathrm{t}} \mathrm{q}_{\mathrm{t}}$ by λ (the uniform inflation rate) which gives $\Sigma \mathrm{p}_{0} \mathrm{q}_{\mathrm{t}}$ (acceptable also any weighted sum of quantities $\Sigma \alpha \mathrm{q}_{\mathrm{t}}$ so that $\Sigma \alpha \mathrm{q}_{\mathrm{t}} / \Sigma \alpha \mathrm{q}_{0}$ represents the volume change).*

	period 0		period 1		period 2		period 3	
	p	q					p	q
A	30	5					45	12
B	10	15					15	18

*It is not reasonable to require a change $\Sigma \mathrm{q}_{\mathrm{t}} / \Sigma \mathrm{q}_{0}$ in the case of this example direct index deflators are equal $\mathrm{P}_{03}^{\mathrm{P}}=\mathrm{P}_{03}^{\mathrm{L}}=\mathrm{P}_{03}^{\mathrm{F}}=1.5$
and yield the same volume $810 / 1.5=450$
6.3 (4) Criteria for deflation: cases 12 (prices same rate) and 21 (quantities same rate)

Chain index deflators will not necessarily result in $\mathrm{P}=1.5$ giving a volume of 450

	period 0		period 1		period 2		period 3	
	p	q	p	q	p	q	p	q
A	30	5	40	3	50	2	45	12
B	10	15	5	20	10	13	15	18

Their result depends on the "path" (intermediate periods, here the white fields)

$$
\begin{aligned}
& \overline{\mathrm{P}}_{03}^{\mathrm{P}}=1.3178 \\
& \overline{\mathrm{P}}_{03}^{\mathrm{L}}=1.8071
\end{aligned}
$$

$$
\overline{\mathrm{P}}_{03}^{\mathrm{F}}=1.5431
$$

generating volumes between 446.24 and 614.67
value $\sum \mathrm{p}_{\mathrm{t}} \mathrm{q}_{\mathrm{t}}=810$
case 21: now $\mathrm{q}_{\mathrm{it}} / \mathrm{q}_{\mathrm{i} 0}=\omega \forall \mathrm{i}$ but $\mathrm{p}_{\mathrm{it}} / \mathrm{p}_{\mathrm{i} 0}$ may be different
When for all quantities holds $\mathrm{q}_{\mathrm{it}}=\omega \mathrm{q}_{\mathrm{i}}$, the value at t is in actual fact simply $\Sigma p_{t} q_{t}=\omega \Sigma p_{t} q_{0}$ and - in line with the principle of pure quantity comparison - the measure of volume change (relative to the volume at $t=0$) should be ω as all quantities changed by the same rate ω.

Which volume at time $\mathrm{t}\left(\mathrm{vol}_{\mathrm{t}}\right)$ is implied using a deflator P given that by definition $\Sigma \mathrm{p}_{\mathrm{t}} \mathrm{q}_{\mathrm{t}} / \mathrm{P}=\mathrm{vol}_{\mathrm{t}}$?
$\mathrm{P}=\mathrm{P}^{\mathrm{P}} \rightarrow \operatorname{vol}_{\mathrm{t}}=\omega \Sigma \mathrm{p}_{0} \mathrm{q}_{0}=\Sigma \mathrm{p}_{0} \mathrm{q}_{\mathrm{t}}$
$\mathrm{P}=\mathrm{P}^{\mathrm{F}}$ yields the same result vol $_{\mathrm{t}}=\Sigma \mathrm{p}_{0} \mathrm{q}_{\mathrm{t}}$

6.3 (5) Criteria for deflation: cases 21 and 22

While we get with a direct Paasche or direct Fisher the same reasonable result, viz. $\operatorname{vol}_{\mathrm{t}}=\omega \sum \mathrm{p}_{0} \mathrm{q}_{0} \quad$ this will no longer hold once chain indices are used as deflators.
To make it simple assume only two links and $\Sigma \mathrm{p}_{2} \mathrm{q}_{2}=\omega \Sigma \mathrm{p}_{2} \mathrm{q}_{0}$. The volumes then are

$$
\begin{aligned}
& \frac{\sum \mathrm{p}_{2} \mathrm{q}_{2}}{\overline{\mathrm{P}}_{02}^{\mathrm{p}}}=\frac{\omega \sum \mathrm{p}_{2} \mathrm{q}_{0}}{\overline{\mathrm{P}_{02}^{\mathrm{p}}}} \Rightarrow \operatorname{vol}_{2}=\omega \frac{\sum \mathrm{p}_{0} \mathrm{q}_{1} \sum \mathrm{p}_{1} \mathrm{q}_{0}}{\sum \mathrm{p}_{1} \mathrm{q}_{1}} \neq \omega \sum \mathrm{p}_{0} \mathrm{q}_{0} \quad \begin{array}{l}
\text { and with a chain } \\
\text { Fisher index }
\end{array} \\
& \frac{\sum \mathrm{p}_{2} \mathrm{q}_{2}}{\overline{\mathrm{P}}_{02}^{\mathrm{F}}} \Rightarrow \operatorname{vol}_{2}=\omega \sqrt{\frac{\sum \mathrm{p}_{2} \mathrm{q}_{0} \sum \mathrm{p}_{0} \mathrm{q}_{1} \sum \mathrm{p}_{0} \mathrm{q}_{0}}{\sum \mathrm{p}_{2} \mathrm{q}_{1}}} \neq \omega \sum \mathrm{p}_{0} \mathrm{q}_{0}
\end{aligned}
$$

To get the same result $\operatorname{vol}_{2}=\omega \sum \mathrm{p}_{0} \mathrm{q}_{0}$ as with direct indices requires

$$
\overline{\mathrm{P}}_{03}^{\mathrm{P}} \rightarrow \frac{\sum \mathrm{p}_{1} \mathrm{q}_{1}}{\sum \mathrm{p}_{0} \mathrm{q}_{1}}=\frac{\sum \mathrm{p}_{1} \mathrm{q}_{0}}{\sum \mathrm{p}_{0} \mathrm{q}_{0}} \text { or } \mathrm{P}_{01}^{\mathrm{L}}=\mathrm{P}_{01}^{\mathrm{P}} \quad \overline{\mathrm{P}}_{03}^{\mathrm{F}} \rightarrow \frac{\sum \mathrm{p}_{2} \mathrm{q}_{1}}{\sum \mathrm{p}_{1} \mathrm{q}_{1}}=\frac{\sum \mathrm{p}_{2} \mathrm{q}_{0}}{\sum \mathrm{p}_{0} \mathrm{q}_{0}}
$$

case 22: both prices as well as quantities may change at different rates ω_{i} (quantities) and λ_{i} (prices)

It does not seem to be easy to find criteria for a reasonable deflation in this situation

6.3 (6) Criteria for deflation

Reasonable though most restrictive is in this case pure quantity comparison, or equivalent, linearity in the quantities:

This requires the movement of volumes to be reflective of changes in the quantities irrespective of how prices changed (uniform or non-uniform). This is also equivalent to additivity of the volumes gained by such a deflation.

case: uniform change as regards	deflation should fulfil	direct indices	chain indices
$\mathbf{1 1}$ both prices and quantities	proportionality in the quantities q_{t}		
$\mathbf{1 2}$ prices only	volume change $\Sigma \alpha_{\mathrm{l}} /$ $\Sigma \alpha_{0}{ }^{*}$	all pass this test	all fail this test
$\mathbf{2 1}$ quantities only	volume change should equal ω		
$\mathbf{2 2}$ neither prices nor quantities	resulting volume index linear in quantities	only P^{P} as deflator	

> To sum up:
> In addition to nonadditivity (applies also to PF^{F}) chain indices may not respond correctly to some simple scenarios
> * this is the same as a linear quantity index, normally very restrictive however, easily met in such a situation

6.3 (7) Criteria: Why proportionality or even linearity in the quantities is desirable?

No chain-index deflator is able to ensure proportionality in the quantities let alone additivity (linearity) in the quantities. So why this is a serious defect?

Given some base period values $\mathrm{V}^{\mathrm{B}}=\Sigma \mathrm{p}_{0} \mathrm{q}_{0}$ for any $\mathrm{k}=1, \ldots, \mathrm{~K}$, as for example $\mathrm{k}=1$ private consumption, and $\mathrm{k}=2$ investment it might be desirable to "update" these aggregates using suitable quantity indices Q_{k}, such that

$$
\mathrm{V}_{1}^{\mathrm{B}} \mathrm{Q}_{1}+\ldots+\mathrm{V}_{\mathrm{K}}^{\mathrm{B}} \mathrm{Q}_{\mathrm{K}}=\left(\mathrm{V}_{1}^{\mathrm{B}}+\mathrm{V}_{\mathrm{K}}^{\mathrm{B}}\right) \mathrm{Q}_{\mathrm{T}}
$$

It may e.g. be an option (or superior method) to extrapolate quantities using an appropriate quantity index (= direct method of deflation)*
The only total-aggregate $\left(\mathrm{Q}_{\mathrm{T}}\right)$ quantity index permitting this type of consistent "updating" of base period (sub-aggregate) volumes to current period volumes needs to be an arithmetic mean of $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \ldots$ with weights g_{k}, hence a Laspeyres quantity index as the counterpart to the harmonic mean (Paasche) of prices:

The harmonic mean in P corresponds to an arithmetic mean in Q , such that we get the pair $\mathrm{P}^{\mathrm{P}}, \mathrm{Q}^{\mathrm{L}}$. In our view this is more reasonable than to seek for factor reversibility.

[^3]6.3 (8) However: a justified critique of traditional (direct Paasche) deflation

Volumes and growth rates of volumes will differ depending on which year is chosen as price basis
History has to be re-written whenever we switch to a new base?
However, it is clear that
$\Sigma \mathrm{p}_{0} \mathrm{q}_{6}, \Sigma \mathrm{p}_{0} \mathrm{q}_{7}, \Sigma \mathrm{p}_{0} \mathrm{q}_{8}, \Sigma \mathrm{p}_{0} \mathrm{q}_{9} \ldots$. and $\Sigma \mathrm{p}_{5} \mathrm{q}_{6}, \Sigma \mathrm{p}_{5} \mathrm{q}_{7}, \Sigma \mathrm{p}_{5} \mathrm{q}_{8}, \Sigma \mathrm{p}_{5} \mathrm{q}_{9}, \ldots$ will in general differ (to expect otherwise would imply transitivity)
Moreover, it is clear that $\sum \mathrm{p}_{0} \mathrm{q}_{1}, \sum \mathrm{p}_{0} \mathrm{q}_{2}, \sum \mathrm{p}_{0} \mathrm{q}_{3}, \ldots$ is a series at constant prices of period 0 . But does this apply also to
$\sqrt{\sum \mathrm{p}_{0} \mathrm{q}_{0} \sum \mathrm{p}_{1} \mathrm{q}_{1} \frac{\sum \mathrm{p}_{0} \mathrm{q}_{1}}{\sum \mathrm{p}_{1} \mathrm{q}_{0}}} \quad \sqrt{\sum \mathrm{p}_{0} \mathrm{q}_{0} \sum \mathrm{p}_{2} \mathrm{q}_{2} \frac{\sum \mathrm{p}_{0} \mathrm{q}_{1} \sum \mathrm{p}_{1} \mathrm{q}_{2}}{\sum \mathrm{p}_{1} \mathrm{q}_{0} \sum \mathrm{p}_{2} \mathrm{q}_{1}}}$
the series we get with chained Fisher deflator

$$
\sqrt{\sum \mathrm{p}_{0} \mathrm{q}_{0} \sum \mathrm{p}_{3} \mathrm{q}_{3} \frac{\sum \mathrm{p}_{0} \mathrm{q}_{1} \sum \mathrm{p}_{1} \mathrm{q}_{2} \sum \mathrm{p}_{2} \mathrm{q}_{3}}{\sum \mathrm{p}_{1} \mathrm{q}_{0} \sum \mathrm{p}_{2} \mathrm{q}_{1} \sum \mathrm{p}_{3} \mathrm{q}_{2}}}
$$

6.4 Direct and chain price indices as deflators

Section 6.3 has shown that all chain price indices as deflators yield volumes that are both
(1) not proportional in the quantities \longrightarrow • meet proportionality in all cases
(2) not additive \longrightarrow • fail additivity in all cases except direct Paasche

In 6.4.1 we examine the relation between direct Fisher and direct Paasche volumes
In 6.4.2 between direct Paasche and chain Paasche
non-additivity as such (in the case of chain Paasche) is well known, however, we study a process of "eternal recurrence" where the same pricequantity situation repeats itself after $\Delta=6$ periods so that
volumes
price indices
deviations due to non-additivity ought to be the same in 0 and 7,1 and $8, \ldots$

In 6.4.3 we examine series of volumes resulting from various methods of deflation (using direct or chain indices). It turns out that the series of chain-method-volumes are complicated and thus difficult to interpret.

6.4.1 Direct Paasche and direct Fisher price indices as deflators

Fisher volume (quantity) indices Q^{F} - resulting from Fisher deflation - differ from the respective Laspeyres indices Q^{L} as follows:

$$
\frac{Q_{0 t}^{F}}{Q_{0 t}^{L}}=\sqrt{\frac{Q_{0 t}^{P}}{Q_{0 t}^{L}}}=\sqrt{\frac{P_{0 t}^{P}}{P_{0 t}^{L}}}
$$

so $\quad \mathrm{Q}_{0 \mathrm{t}}^{\mathrm{F}}<\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}}$ if $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}<\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}$ and the Bortkiewicz relation holds (covariance between price and quantity relatives, denoted by a and b)
Assume an aggregate S as the sum of sub-aggregates A

$$
\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{F}}=\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}} \sqrt{1+\mathrm{r}_{\mathrm{ab}} \mathrm{~V}_{\mathrm{a}} \mathrm{~V}_{\mathrm{b}}}
$$ and B. The value $\left(\Sigma p_{t} q_{t}\right)$ of S then is $V_{S}=V_{A}+V_{B}$.

Deflation of these values using direct Paasche price indices for A, B and S gives

$$
\overline{\mathrm{V}}_{\mathrm{S}}=\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{P}^{\mathrm{PS}}}=\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{P}^{\mathrm{PA}}}+\frac{\mathrm{V}_{\mathrm{B}}}{\mathrm{P}^{\mathrm{PB}}}=\overline{\mathrm{V}}_{\mathrm{A}}+\overline{\mathrm{V}}_{\mathrm{B}} \quad \begin{aligned}
& \text { This condition of } \\
& \begin{array}{l}
\text { additivity holds as } \\
\text { the Paasche deflator } \\
\text { is a harmonic mean }
\end{array}
\end{aligned} \quad\left(\mathrm{P}^{\mathrm{PS}}\right)^{-1}=\frac{\frac{1}{\mathrm{P}^{\mathrm{PA}} \mathrm{~V}_{\mathrm{A}}+\frac{1}{\mathrm{P}^{\mathrm{PB}}} \mathrm{~V}_{\mathrm{B}}}}{\mathrm{~V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{B}}}
$$

The equivalent equation when direct Fisher indices are used as deflators

Additivity is valid only in very special cases, e.g. if $\mathrm{P}^{\mathrm{PA}}=\mathrm{P}^{\mathrm{PB}}=\mathrm{P}^{\mathrm{PS}}$ or $\mathrm{P}^{\mathrm{LA}}=\mathrm{P}^{\mathrm{LB}}=\mathrm{P}^{\mathrm{LS}}$. The total Fisher index P^{FS} (the $\sqrt{ }$ on the LHS) is not a harmonic mean
6.4.2 (1) Example: Direct Paasche (= at constant prices) and additivity

t	pa1	qa1	pa2	qa2	pb1	qb1	pb2	qb2	commodities a1, a2 of A
0	30	70	50	30	90	20	120	130	$1, \mathrm{~b} 2$ of B
1	45	84	75	48	135	36	180	24	
2	54	100	60	77	121	65	252	19	$\mathrm{q}=$ quantity
3	65	110	70	80	130	60	230	25	
4	70	90	68	85	120	68	210	30	
5	75	120	80	70	135	45	220	80	
6	50	80	70	50	100	30	170	100	
7	30	70	50	30	90	20	120	130	same as $\mathrm{t}=0$
8	45	84	75	48	135	36	180	24	same as $\mathrm{t}=1$
9	54	100	60	77	121	65	252	19	same as $\mathrm{t}=2$

For $\mathrm{t}=0$ and $\mathrm{t}=1$ is this ex. 5.2.1 of v.d.Lippe (2007),

6.4.2 (2) Total volumes, Non-additivity of chain-deflator volumes

Volumes 1. Paasche chain index (total aggregate deflated $=\operatorname{chvol}(\mathbf{s})$ and sum of derived from the partial (aggregates A and B) volumes = chvolsum
2. direct Paasche index $=$ volPP

Volumes should be identical in periods

0 and 7
8 and 1
9 and 2

Higher chained volumes in periods 5 to 7 because chained deflator is smaller than direct

Paasche deflator

Divergence of chvol(s) and chvolsum because chained volumes are not additive
6.4.2 (3) Discrepancies between volumes, Non-additivity of chain-deflator volumes

Discrepancy due to non-additivity is not substantial

Example: in period 7 chain-volume of total aggregate is by 6.57% lower than sum of the chain volumes of aggregates A and B
chained volumes (chain) are up to 8% higher than const. prices volumes (direct)
chained volume of sum (chain) smaller than sum of chained volumes (sumchain)

\mathbf{t}	$\mathbf{D} \%$
0	0,00
1	0,00
2	0,00
3	0,00
4	$-0,62$
5	$-2,36$
6	$-4,83$
7	$-6,57^{*}$
8	$-3,56$
9	$-3,43$

6.4.2 (4) Direct Paasche and chained Paasche as deflators (total aggregate*)

\mathbf{t}	PPchain(s)	PPdir(s)		
0	1,000	1,000		
1	1,500	1,500		
2	1,514	1,514		
3	1,638	$4, \ldots \ldots$		
4	1,579	1,592		
5	1,709	1,845		
6	1,304	1,403		
7	0,922	1,000		
8	1,383	1,500		
9	1,395	1,514	\quad	4
:---				

Direct Paasche is indeed the same in 0 and 7,1 and 8 , and in 2 and 9
As a rule chain index is lower than direct index

* a closer look at the components (sub-aggregates) \rightarrow
6.4.2 (5) Price indices (deflators) for the components (subaggregates) A and B

direct Paasche indices

Price indices repeat
themselves after Δ periods

6.4.2 (6) Volumes (chained and at constant p_{0} prices)

If B-A were a balancing item (e.g. net export), thus positive or negative

6.4.3 (1) The sequence of volumes

see also 6.3 (8)
direct Paasche chain Paasche
$\sum \mathrm{q}_{1} \mathrm{p}_{0} \quad \sum \mathrm{q}_{1} \mathrm{p}_{0}$
$\sum \mathrm{q}_{2} \mathrm{p}_{0} \quad \sum \mathrm{q}_{2} \mathrm{p}_{0} \frac{\sum \mathrm{p}_{0} \mathrm{q}_{1} \sum \mathrm{p}_{1} \mathrm{p}_{2}}{\sum \mathrm{p}_{0} \mathrm{q}_{2} \sum \mathrm{p}_{1} \mathrm{q}_{1}}$
$\sum \mathrm{q}_{3} \mathrm{p}_{0}$

$$
\sum \mathrm{q}_{3} \mathrm{p}_{0} \frac{\sum \mathrm{p}_{0} \mathrm{q}_{1}}{\sum \mathrm{p}_{0} \mathrm{q}_{3}} \frac{\sum \mathrm{p}_{1} \mathrm{q}_{2}}{\sum \mathrm{p}_{1} \mathrm{q}_{1}} \frac{\sum \mathrm{p}_{2} \mathrm{q}_{3}}{\sum \mathrm{p}_{2} \mathrm{q}_{2}}
$$

general
$\sum \mathrm{q}_{\mathrm{t}} \mathrm{p}_{0}$

$$
\sum q_{1} p_{0} \frac{\sum p_{0} q_{1}}{\sum p_{0} q_{t}} \frac{\sum p_{1} q_{2}}{\sum p_{1} q_{t}} \ldots \frac{\sum p_{t-1} q_{t}}{\sum p_{t-1} q_{t-1}}
$$

6.4.3 (2) The sequence of volumes

$$
\begin{aligned}
& \sum \mathrm{q}_{1} \mathrm{p}_{0} \sqrt{\frac{\sum \mathrm{p}_{0} \mathrm{q}_{0}}{\sum \mathrm{p}_{0} \mathrm{q}_{1}} \sum_{\mathrm{p}_{1} \mathrm{q}_{1}} \mathrm{p}_{1} \mathrm{q}_{0}} \sqrt{\sum \mathrm{p}_{0} \mathrm{q}_{0} \sum \mathrm{p}_{1} \mathrm{q}_{1} \sum_{i} \sum_{\mathrm{p}_{1} \mathrm{q}_{1}}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { general } \\
& \sum \mathrm{q}_{\mathrm{t}} \mathrm{p}_{0} \sqrt{\frac{\sum \mathrm{p}_{0} \mathrm{q}_{0}}{\sum \mathrm{p}_{0} \mathrm{q}_{\mathrm{t}}} \frac{\sum \mathrm{p}_{\mathrm{t}} \mathrm{q}_{\mathrm{t}}}{\sum \mathrm{p}_{\mathrm{t}} \mathrm{q}_{0}}} \sqrt{\sum \mathrm{p}_{0} \mathrm{q}_{0} \sum \mathrm{p}_{\mathrm{t}} \mathrm{q}_{\mathrm{t}} \sum_{\sum \mathrm{p}_{0} \mathrm{q}_{1} \mathrm{p}_{1} \mathrm{q}_{0} \sum_{\mathrm{p}_{1} \mathrm{q}_{2}}^{\sum \mathrm{p}_{2} \mathrm{q}_{1}} \sum \mathrm{p}_{2} \mathrm{p}_{3} \mathrm{p}_{3} \mathrm{q}_{2}}^{\ldots} \frac{\sum \mathrm{p}_{\mathrm{t}-1} \mathrm{q}_{\mathrm{t}}}{\sum \mathrm{p}_{\mathrm{t}} \mathrm{q}_{\mathrm{t}-1}}} \\
& =\sum q_{t} p_{0} \sqrt{Q_{0 \mathrm{t}}^{\mathrm{P}} / \mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}}}
\end{aligned}
$$

6.5.1 (1) Chain index deflation and additivity: SNA and ESA on additivity

SNA (1993)
§16.56 Although desirable from an accounting viewpoint, additivity is actually a very restrictive property
$\$ 16.57$...publishing data only in the form of index numbers and not as values means abandoning any attempt to construct accounts at constant prices
$\$ 16.58$...there are effectively three ways of dealing with the ensuing non-additivity

- The first is simply to publish the non-additive constant price data as they stand without any adjustment....
- The second possibility it to distribute the discrepancies over the components at each level of aggregation ...this procedure is not without its cost as the volume movements for the components are distorted. For certain types of analysis such distortions could be a serious disadvantage.
- A third possibility would be to eliminate the discrepancies by building up the values of the aggregates as the sum of the values ... at each level of aggregation.
6.5.1 (2) Chain index deflation and additivity: SNA on additivity

SNA: different volumes (bad/additive, good/non-additive) for different kind of users:
$\$ 16.75 \ldots$ it must be recognized that the lack of additive consistency can be a serious disadvantage for many types of analysis ... It is therefore recommended that disaggregated constant price data should be compiled and published in addition to the chain indices for the main aggregates.

The need to publish two sets of data ... should be readily appreciated by analysts ...
Users whose interests are confined to a few global measures of real growth and inflation can be advised to utilize the chain indices and ignore the more detailed constant price estimates.

Given that a new method is usually introduced because it is a better method this means

- the less sophisticated users (those "who are confined...") get the better results (using the better [= chain index] method), whereas
- those who need better data (analysts, econometricians) get in addition figures gained with the old (traditional, inferior, abandoned) constant-prices-method.

6.5.1 (3) Chain index and additivity: ESA and BEA (USA) on additivity

The European position is quite similar. It is only that the Laspeyres-Paasche pair ($\mathrm{P}^{\mathrm{P}}, \mathrm{Q}^{\mathrm{L}}$) is still preferred to the Fisher index in deflation methodology:

ESA Council Regulation (No. 2223/96)
"... that disaggregated constant price data, i.e. direct valuation of current quantities at base-year prices, are compiled in addition to the chain indices for the main aggregates" (§ 10.66)
"...it will have to be explained to users why there is no additivity in the tables. The non additive 'constant price' data is published without any adjustment. This method is trans-parent and indicates to users the extent of the problem." (§ 10.67)

Bureau of Economic Analysis (BEA) US Department of Commerce

As usual when an index fails a "test" or axiom a debate breaks out coming to the point that passing the test is not desirable, or even noxious:

Ehemann, Katz \& Moulton tried to play down the issue of additivity, contending 1. many types of analysis do not require additivity
2. traditional "fixed base" cross-sectional comparisons generally dubious
3. Deflation using Fisher indices is also approximately additive
6.5.1 (4) BEA (USA) on additivity (position of Ehemann, Katz \& Moulton EKM)

BEA Non-additivity is not really a problem for chain index deflation

additivity not required	
\square	
often	for many
only	analyses
the	only values
overall	(at current
aggre-	prices)
gate of	relevant
interest	

severe shortcomings of traditional methods outweigh and dwarf their advantage of additivity
the result of constant prices (traditional volumes) comparisons between aggregates say X_{1} and X_{2} is dubious and prone to error: $X_{1}>X_{2}$ at prices of 2000 , however $X_{1}<X_{2}$ at prices of 2005
an exact decomposition of percentage change (CPC)* of P^{F} deflation (like direct P^{P} deflation) is possible
use can be made of a formula of Dikhanov, mentioned also in Diewet who credits van Ijzeren for it (\Rightarrow)
note that the CPC of the i-th commodity does not only depend on $q_{i, \text {, }}$ t and $q_{i, t, t}$ but also on two prices of i and the Fisher price index link P^{F} (so that weights are variable

$$
C C_{i}^{t}=\frac{\left(p_{i, t-1}+\frac{p_{i, t}}{P_{t}^{F}}\right)\left(q_{i, t}-q_{i, t-1}\right)}{\left(\mathbf{p}_{t-1}+\mathbf{p}_{t} / P_{t}^{\mathrm{F}}\right) \mathbf{q}_{t-1}}
$$

* of $\mathrm{CPC}_{\mathrm{i}}$ contributions of components (the i th good) to the percent change in (the volume of) an aggregate

6.5.1 (5) Chain index and additivity: ESA and BEA (USA) on additivity

The basis of this formula can be found in Diewert's Lecture notes ch. 3, p. 17/18) reading as follows (in Diewert's notation):
"Consider the following $N+2$ equations in the $N+2$ unknowns, Q_{F} and P_{F} and pi *:
(i) $\quad \mathrm{Q}_{\mathrm{F}}=\sum_{\mathrm{i}=1}{ }^{\mathrm{N}} \mathrm{p}_{\mathrm{i}}{ }^{*} \mathrm{q}_{\mathrm{i}}{ }^{1} / \sum_{\mathrm{m}=1}{ }^{\mathrm{N}} \mathrm{p}_{\mathrm{m}} * \mathrm{q}_{\mathrm{m}}{ }^{0}$;
(ii) $\mathrm{P}_{\mathrm{F}} \mathrm{Q}_{\mathrm{F}}=\sum_{\mathrm{i}=1}{ }^{\mathrm{N}} \mathrm{p}_{\mathrm{i}}{ }^{1} \mathrm{q}_{\mathrm{i} 1} / \sum_{\mathrm{m}=1}{ }^{\mathrm{N}} \mathrm{p}_{\mathrm{m}}{ }^{0} \mathrm{q}_{\mathrm{m}}{ }^{0}$;
(iii) $\mathrm{p}_{\mathrm{i}}^{*}=(1 / 2) \mathrm{p}_{\mathrm{i}}^{0}+(1 / 2)\left(\mathrm{p}_{\mathrm{i}}^{1} / \mathrm{P}_{\mathrm{F}}\right)$ for $\mathrm{i}=1, \ldots, \mathrm{~N}$.

Show that the Q_{F} solution to the above equations is the Fisher ideal quantity index Thus (i) and (iii) show that the Fisher quantity index has an additive decomposition ..., which is due to Van IJzeren $(1987 ; 6)$. The ith reference price p_{i}^{*} is defined as $\mathrm{p}_{\mathrm{i}}^{*} \equiv(1 / 2) \mathrm{p}_{\mathrm{i}}^{0}+(1 / 2) \mathrm{p}_{\mathrm{i}}{ }^{1} / \mathrm{P}_{\mathrm{F}}\left(\mathrm{p}_{0}, \mathrm{p}_{1}, \mathrm{q}_{0}, \mathrm{q}_{1}\right)$ for $\mathrm{i}=1, \ldots, \mathrm{~N}$ and where P_{F} is the Fisher price index.

This decomposition was also independently derived by Dikhanov (1997). The Van IJzeren decomposition for the Fisher quantity index is currently being used by Bureau of Economic Analysis; see Moulton and Seskin (1999; 16) and Ehemann, Katz and Moulton (2002)."

The solution of this exercise and therefore the derivation of the CPC-formula is far from simple. By contrast the following presentation of Fisher's Q^{F} (or Q_{F} as above) in the textbook of Köves (p. 79) as an arithmetic (rather than geometric) mean is trivial and it also applies to P^{F} and the links of a (Fisher)

$$
Q_{0 t}^{F}=\frac{\left(Q_{0 t}^{F}-Q_{0 t}^{P}\right) Q_{0 t}^{L}+\left(Q_{0 t}^{L}-Q_{0 t}^{F}\right) Q_{0 t}^{P}}{Q_{0 t}^{L}-Q_{0 t}^{P}}
$$ chain index.

6.5.2 (1) Additive volumes and chain indices: suggestions of Claude Hillinger

Hillinger starts with a definitely wrong statement:
"Only a uniform deflator applied to all prices will produce expenditures satisfying the postulate ... (it) obviously maintains the additivity of nominal expenditures. The postulate is so elementary as to seem trivial, but no one appears to have thought of it."*
This rules out a deflation in volume terms and explains his preference for deflation in real income terms (a trivial solution to the additivity problem).

His central concept are AREVs (= aggregate real expenditure variation) defined in vector notation
$\breve{y}^{t+1}-\breve{y}^{\mathrm{t}}=\breve{\mathbf{p}}^{\mathrm{t}+1} \mathbf{x}^{\mathrm{t}+1}-\breve{\mathbf{p}}^{\mathrm{t}} \mathbf{x}^{\mathrm{t}}$
being the sum of

$$
\begin{array}{ll}
\frac{1}{2}\left(\breve{p}^{t+1}+\breve{p}^{t}\right)\left(\mathrm{X}^{\mathrm{t}+1}-\mathrm{X}^{\mathrm{t}}\right)=\mathrm{QV} & \mathrm{QV}=\text { quantity variation } \\
\frac{1}{2}\left(\mathrm{X}^{\mathrm{t}+1}+\mathrm{X}^{\mathrm{t}}\right)\left(\breve{\mathrm{p}}^{\mathrm{t}+1}-\breve{\mathrm{p}}^{\mathrm{t}}\right)=\mathrm{PV} & P V=\text { Price variation }
\end{array}
$$

* his postulate is: real expenditures must reflect the exchange ratios in the market, i.e. current prices.

6.5.2 (2) Claude Hillinger's solution to additivity

Usage of $\left(\mathbf{x}^{t+1}+\mathbf{x}^{\mathrm{t}}\right) / 2=\left(\mathbf{q}_{t+1}+\mathbf{q}_{t}\right) / 2$ explains Hillinger's preference for the ME- Index
Definition of the "reduced" price vector $\breve{\mathbf{p}}^{\mathrm{t}}=\frac{1}{\overline{\mathrm{P}}_{0 \mathrm{t}}^{\mathrm{ME}, \mathrm{C}}} \mathbf{p}^{\mathrm{t}}$
$\begin{aligned} & \text { to make this clear it is worth- } \\ & \text { while spelling out } P^{\text {ME }} \text { in detail } \\ & \bar{P}_{0 t}^{\text {ME,C }}\end{aligned}=\frac{\sum p_{1}\left(q_{0}+q_{1}\right)}{\sum p_{0}\left(q_{0}+q_{1}\right)} \frac{\sum p_{2}\left(q_{1}+q_{2}\right)}{\sum p_{1}\left(q_{1}+q_{2}\right)} \ldots \frac{\sum p_{t}\left(q_{t-1}+q_{t}\right)}{\sum p_{t-1}\left(q_{t-1}+q_{t}\right)}$
Hillinger also discredited "additivity" by making a questionable comparison between volumes and quantities
"...quantities are generally not additive ... it makes no sense to add heterogeneous units." (Volumes) "remain quantity measures, and adding them up is, if anything, misleading ... there is no reason to seek additivity for quantities and its absence cannot therefore be a source of concern" (p. 16)
If this were correct, also values (at current prices) would be meaningless: they also represent quantities only related to different prices than volumes. And if his postulate (real expenditures must reflect current prices) were correct why should we deflate at all?

Moreover: "A serious difficulty with this system is that the level of subaggregate k need not be positive, even if all of its components and their prices are positive" (Ehemann/Katz/Moulton)
6.5.3 (1) Additivity of volumes and chain index deflation: Balk's solution

An attempt to reconcile chain-index-deflation and additivity
BR = Bert M. Balk, Utz-Peter Reich, Additivity of National Accounts Reconsidered Journal of Economic and Social Measurement 33 (2008) pp 165 - 178 (version June 2007)
BR acknowledge that there is a fundamental inconsistency
"a mathematical impossibility result; between two conflicting goals"
however
"realism of the price system ... has been accorded over additivity of values yielding coherent national accounts

6.5.3 (2) Additivity and chaining: Balk's solution

6.5.3 (3) Additivity and chain index deflation: solution of Balk and Reich

$\mathrm{V}_{\mathrm{k}, \mathrm{t}}$ value $\left(\Sigma \mathrm{p}_{\mathrm{t}} \mathrm{q}_{\mathrm{t}}\right)$ of the (sub-) aggregate k and $\mathrm{V}_{\mathrm{t}}=\Sigma \mathrm{V}_{\mathrm{k}, \mathrm{t}} \mathrm{k}=1,2, \ldots, \mathrm{~K}$

6.5.3 (4) Interpretation of the BR volumes

The sequence of (BR-) volumes $\mathbf{Q}^{B R}$ for the k-th sub-aggregates more complicated: the ratio Q_{t} / Q_{t-1} (and difference $Q_{t}-Q_{t-1}$) "is a less meaningful
measurement tool" However $\mathrm{Qt} / \mathrm{Qt}-1-1$ is the growth rate of real GDP
With direct Paasche deflators and Laspeyres-volume indices Q^{L} we have $\left(j=1, \ldots, n_{k}\right)$

Difference
Ratio

$$
\begin{aligned}
& Q_{k t}^{L}-Q_{k, t-1}^{L}=\sum_{j} p_{k j 0}\left(q_{k j t}-q_{k j, t-1}\right) \\
& Q_{k, t}^{L} / Q_{k, t-1}^{L}=\sum_{j} p_{k j 0} q_{k j, t} / \sum_{j} p_{k j 0} q_{k j, t-1} \longleftarrow \text { mean of } q_{\mathrm{t}} / q_{t-1} \text { terms }
\end{aligned}
$$

However, in the Balk/Reich (BR) methodology and different prices

Difference	$Q_{k t}^{B R}-Q_{k, t-1}^{B R}=\sum_{j} p_{k j, t-1} q_{k j, t} / \bar{P}_{0 t}^{P}-\sum_{j} p_{k j, t-2} q_{k j, t-1} / \bar{P}_{0, t-1}^{P}$
Ratio	$Q_{k t}^{B R}$
$Q_{k, t-1}^{B R}$	

(history of prices

and quantities

until t-1)\end{array}]{ }\)
this second term is a mean of q_{t} / q_{t-1} terms; in numerator and denominator the same prices (of $\mathrm{t}-1$)
6.5.3 (5) Values (V) and volumes (Q), Why additivity?

BR volumes Definition and additivity

individual volumes	$\mathrm{Q}_{\mathrm{k}, \mathrm{t}}^{\mathrm{BR}}=\frac{\mathrm{V}_{\mathrm{k}, \mathrm{t}}}{\mathrm{P}_{\mathrm{k}, 0 \mathrm{t}}^{*}}=\frac{\mathrm{V}_{\mathrm{k}, \mathrm{t}}}{\mathrm{P}_{\mathrm{k}, \mathrm{t}}^{P}} \frac{1}{\overline{\mathrm{P}}_{0, \mathrm{t}-1}^{\mathrm{P}}}=\frac{\mathrm{V}_{\mathrm{k}, \mathrm{t}}}{\mathrm{P}_{\mathrm{k}, \mathrm{t}}^{\mathrm{P}}} \mathrm{C}^{-1}$
additivity	$\sum_{\mathrm{k}} \mathrm{Q}_{\mathrm{k}, \mathrm{t}}^{\mathrm{BR}}=\sum_{\mathrm{k}} \frac{\mathrm{V}_{\mathrm{kt}}}{\mathrm{P}_{\mathrm{k}, 0 \mathrm{t}}^{*}}=\mathrm{C}^{-1} \mathrm{~V}_{\mathrm{t}} \sum_{\mathrm{k}}\left(\frac{1}{\mathrm{P}_{\mathrm{k}, \mathrm{t}}^{\mathrm{P}}} \frac{\mathrm{V}_{\mathrm{kt}}}{\mathrm{V}_{\mathrm{t}}}\right)=\left(\mathrm{V}_{\mathrm{t}} \mathrm{C}^{-1}\right)\left(\mathrm{P}_{\mathrm{t}}^{\mathrm{P}}\right)^{-1}=\frac{\mathrm{V}_{\mathrm{t}}}{\overline{\mathrm{P}}_{\mathrm{ot}}^{\mathrm{P}}}$

Sequence of volumes of sub-aggregate k : $\mathrm{Q}_{\mathrm{k}, 2}, \mathrm{Q}_{\mathrm{k}, 3}, \mathrm{Q}_{\mathrm{k}, 4} \ldots$

direct Paasche $=$ Laspeyres quantity	$\sum_{j} \mathrm{p}_{\mathrm{kj0}} \mathrm{q}_{\mathrm{kj} 2}$	$\sum_{j} \mathrm{p}_{\mathrm{kj} 0} \mathrm{q}_{\mathrm{kj} 3}$	$\sum_{j} \mathrm{p}_{\mathrm{k} j 0} \mathrm{q}_{\mathrm{k}, 4}$
BR-volumes	$\sum_{j} \mathrm{p}_{\mathrm{kj} 1} \mathrm{q}_{\mathrm{k} 2} / \overline{\mathrm{P}}_{01}^{\mathrm{p}}$	$\sum_{j} \mathrm{p}_{\mathrm{k} 2} \mathrm{q}_{\mathrm{k} 3} / \overline{\mathrm{P}}_{02}^{\mathrm{p}}$	$\sum_{j} \mathrm{p}_{\mathrm{kj} 3} \mathrm{q}_{\mathrm{k} 4} / \overline{\mathrm{P}}_{03}^{\mathrm{p}}$

Sequence of BR-volumes appears less meaningful

6.5.4 (1) Critique and example: BR-volumes violate proportionality

The example shows that BR deflation violates proportionality (thus also identity) commodities 1 and 2 belong to aggregate $\mathrm{A}, 3$ and 4 to aggregate B

Direct deflation (Laspeyres volume) Paasche meets proportionality in the q_{t} values $\Sigma \mathbf{q}_{\mathbf{t}} \mathbf{p}_{\mathbf{t}}$

i	$\mathrm{p}_{\mathrm{i} 0}$	$\mathrm{q}_{\mathrm{i} 0}$	$\mathrm{p}_{\mathrm{i} 1}$	$\mathrm{q}_{\mathrm{i} 1}$	$\mathrm{p}_{\mathrm{i} 2}$	$\mathrm{q}_{\mathrm{i} 2}$
1	5	10	8	8	5	10
2	8	6	10	7	8	6
3	3	4	5	6	3	8
4	6	8	8	9	6	16

direct Paasche deflator

	$\left(\mathrm{P}_{01}\right) \mathrm{t}=1$	$\left(\mathrm{P}_{02}\right) \mathrm{t}=2$
A	$134 / 96=1,396$	1
B	$102 / 72=1,417$	1
Σ	$236 / 168=1,405$	1

	0	1	2
A	98	134	$\mathbf{9 8}$
B	60	102	$\mathbf{1 2 0}$
Σ	158	236	$\mathbf{2 1 8}$

volumes $\Sigma \mathbf{q}_{\mathbf{t}} \mathbf{p}_{\mathbf{0}}$

	$\mathrm{t}=1$	$\mathrm{t}=2$
A	96	$\mathbf{9 8}$
B	72	$\mathbf{1 2 0}$
Σ	168	$\mathbf{2 1 8}$

6.5.4 (2) BR-volumes violate proportionality

Deflation according to BR (Balk/Reich)
grey what did not change

Paasche chain indices

	$\left(\mathrm{P}_{01}\right) \mathrm{t}=0 \rightarrow \mathrm{t}=1$	$\left(\mathrm{P}_{12}\right) \mathrm{t}=1 \rightarrow \mathrm{t}=2$
A	$134 / 96=1,396$	$98 / 140=0,7000$
B	$102 / 72=1,417$	$120 / 168=0,7143$
Σ	$236 / 168=1,405$	$218 / 308=0,7078$

Deflator in period 2

A	$0,7000^{*} 1,405=0,9833$	
B	$0,7143^{*} 1,405=1,0034$	$\mathrm{P}_{\mathrm{k}, \mathrm{t}}^{*}=\mathrm{P}_{\mathrm{k}, \mathrm{t}}^{\mathrm{P}} \overline{\mathrm{P}}_{0, \mathrm{t}-1}^{\mathrm{P}}$
Σ	$0,7078 * 1,405=0,9943$	$\overline{\mathrm{P}}_{0 \mathrm{t}}^{\mathrm{P}}$

values (as before)
0 1 2 A 98 134 $\mathbf{9 8}$ B 60 102 $\mathbf{1 2 0}$ Σ 158 236 $\mathbf{2 1 8}$ volume A 96 $\mathbf{9 9 , 6 6 1}$ B 72 Σ 168 $\mathbf{1 1 9 , 5 9 3}$ Σ no identity, although additivity is given

6.5.4 (3) Variant of the numerical example: high prices in the intermediate period
some new prices $\mathrm{p}_{\mathrm{i} 1}$ ceteris paribus in blue
grey as before
values

i	$\mathrm{p}_{\mathrm{i} 0}$	$\mathrm{q}_{\mathrm{i} 0}$	$\mathrm{p}_{\mathrm{i} 1}$	$\mathrm{q}_{\mathrm{i} 1}$	$\mathrm{p}_{\mathrm{i} 2}$	$\mathrm{q}_{\mathrm{i} 2}$
1	5	10	18	8	5	10
2	8	6	20	7	8	6
3	3	4	$\mathbf{1 5}$	6	3	8
4	6	8	8	9	6	16

	0	1	2
A	98	284	$\mathbf{9 8}$
B	60	168	$\mathbf{1 2 0}$
Σ	158	452	$\mathbf{2 1 8}$

BR-deflator index in $\mathbf{t = 2}$

A	$(98 / 300) *(452 / 168)=0,8788$
B	$(120 / 248)^{*}(452 / 168)=1,3018$
Σ	$(218 / 548)^{*}(452 / 168)=1,0703$

$\mathrm{P}_{01}=452 / 168=2,6905$ enormous rise of prices (0 to 1),
then prices were declining (by 32 or 48% respectively)
$\mathrm{P}_{01}=452 / 168=2,6905$ enormous rise of prices (0 to 1),
then prices were declining (by 32 or 48% respectively) to their original level
volumes

	$\mathrm{t}=1$	$\mathrm{t}=2$
A	96	$\mathbf{1 1 1 , 5 0 4}$
B	72	$\mathbf{9 2 , 1 7 7}$
Σ	168	$\mathbf{2 0 3 , 6 8 1}$

no identity

1. Chain index and deflator no longer identical

aggregate-specific indices are not chained, and chained indices are not used for deflation

2. Differences/ratios (growth rates) of successive volumes (year-on- year) difficult to interpret

they do not represent a pure volume change; different prices in numerator and denominator, that is no volumes at constant prices and path-dependent, BR: "less meaningful"

3. Volumes are not proportional in the quantities q_{t}

Same prices and same (or proportional) quantities \rightarrow yet different volumes; the violation of proportionality is particularly pronounced when prices are exceptionally high/low in the intermediate period(s).

References

Balk, Bert M. and Utz-Peter Reich, Additivity of National Accounts Reconsidered Journal of Economic and Social Measurement 33 (2008) pp 165-178

Destatis (German Statist. Office), Problems encountered in the context of calculation of capital stock using the Perpetual Inventory Method (PIM), when using volume at previous year's prices in contrast to the current fixed price method, Doc. no. 5 of the Seminar "Introduction of Chain Indices in National Accounts", $24-25$ Oct. 2002, Luxembourg
Diewert, W. Erwin, Lecture Notes "Index Number Theory and Measurement Economics", chapter 3: The Axiomatic Approach to Bilateral Index Number Theory, version March 31, 2008
Ehemann, Christian, Katz, Arnold J. and Brent Moulton, How the Chain Additivity Issue is Treated in the U.S. Economic Accounts; also in Journal of Economic and Social Measurement, vol 28 (1,2), 2002
Eiglsperger, Martin and Schackis, Daniela, Weights in the Harmonised Index of Consumer Prices: Selected Aspects from a User's Perspective, Contribution to the Meeting of the Ottawa Group in Neuchatel, Switzerland 2009
Köves, Pál, Index Theory and Economic Reality, Budapest 1983
Greenlees, John S. and Williams Elliot, Reconsideration of Weighting and Updating Procedures in the US CPI
Hillinger, Claude, Consistent aggregation and chaining of price and quantity measures, Journal of Economic and Social Measurement Vol. 28 (2002), pp.1-20

[^0]: * This part of the course is necessarily only incomplete and provisional

[^1]: *serving the same purpose from the point of view of households

[^2]: * according to Leifer/Tennagels ** or reference) period

[^3]: * The Handbook on volume measurement considers this method (to use indicators of quantity) in particular in the case of non-market production (government, education, administration, health etc.).

