Prof. Dr. Peter von der Lippe www.von-der-lippe.org

Problems with Chain Indices (III)

Quarterly National Accounts (QNA) and Annual National Accounts (ANA)

Course delivered at the European Central Bank Frankfurt

Part III: QNA and ANA

7. Chainlinking in QNA

7.1 Overview of methods and general principles
7.2 Steps common to all three methods
7.3 Indices for quarters and years
7.3.1 Annual overlap (AO)
7.3.2 Quarterly overlap (QO)
7.3.3 Over the year (OY)
7.4 Results and comparison with traditional methods
7.4.1 Volumes at constant prices of the base year 0 and quarterly indices (AO, QO, OY)
7.4.2 Annual indices (AO, QO, OY)
7.4.3 Quarterly linked indices
7.4.4 The IMF - numerical example

Part III: QNA and ANA

7. Chainlinking in QNA

7.5 Time series, consistent and inconsistent comparisons, and contribution to percentage change (decomposition of growth)
7.5.1 Annual overlap (AO)
7.5.1x Digression: decomposition of growth (AO technique)
7.5.2 Quarterly overlap (QO)
7.5.3 Over the year (OY)
7.5.4 Chaining and the annual indices
7.6 Merits and demerits of the methods

7.1 (1) Why special chain-linking methods?

1. Chain indices as deflators in QNA as a consequence of move to chain indices in the deflation methodology of ANA in the SNA 1993
2. Difficult problems with chaining in QNA in particular because:

- Need for consistency between QNA and ANA: annual sum of quarterly aggregates should not differ from ANA results "quarterly chain may move counter to the annual one" (Kuhnert, Eurostat)
- "Drift, occurring with cyclical price and quantity movements, is more problematic as these cycles are more common in QNA (seasonality!)" \rightarrow price weights of the previous year rather than of the previous quarter" (Kuhnert)
\rightarrow theory is more difficult: double indication $(y, q) I_{1,1} I_{1,2} I_{1.3} I_{1,4} I_{2,1} I_{2,2} I_{2,3} I_{2,4}$ not all elements are "linked" together, for example only $\mathrm{I}_{2,4}=\mathrm{L}_{1} * \mathrm{I}_{1,4}$ and $\mathrm{I}_{3,4}=\mathrm{L}_{2} * \mathrm{I}_{2,4}$
- unlike the situation of annual indices there is a choice among different "linking techniques': annual overlap (AO), quarterly overlap (QO), over the year (OY)

3. Compared to traditional "constant prices" - volume indicators the computational burden of a permanent update of the price base is heavier (some re-valuations necessary)
7.1 (2) Why special chain-linking methods? (part 2)
4. Consequences of different choices of index formulas may be less pronounced (Fisher [smaller drift?] may have less formal advantages over Laspeyres)
5. Seasonal adjustment*: changes in the price-weight-base of volumes (e.g. between Q4 in y and Q1 in y+1 may be seen (mistaken) as seasonal pattern; should seasonal adjusted (SA) or non-SA figures be chain-linked?

A problem is in which order the following operations should be carried out:
Chaining (C), seasonal adjustment (A), benchmarking (B): C - A - B ?
6. Experience shows that difference between methods might be negligibly small; (unless there are significant substitution processes) "no method is the uniformly superior method" (Handbook on Price and Volume Measurement)
7. While turning points seem to be robust over different chain-linking techniques, seasonal and working day adjustment and outlier detection can be affected.*
8. Benchmarking (QNA/ANA discrepancy) may interfere with outlier detection and business cycle analysis* and also seasonal adjustment*

[^0]* more in part IV

7.1 (3) Overview of methods for chainlinking QNA: evaluation criteria

1. Dimensions of comparability

		period (e. g. quarter)	
		same	different
			D1 between successive periods of one year (quarter-on-quarter) $(\mathrm{y}, \mathrm{q}) \rightarrow(\mathrm{y}, \mathrm{q}-1)$
$\begin{aligned} & \text { ¢ } \\ & \text { ¿్ర } \end{aligned}$	$\begin{aligned} & \text { 巳} \\ & \underset{\oplus}{9} \\ & 0 \\ & \hline \end{aligned}$	D2 between a period of the current year and the same period in the previous year $(\mathbf{y}, \mathbf{q}) \rightarrow(\mathbf{y}-1, q)$	D3 $(\mathbf{y}, \mathrm{q}) \rightarrow(\mathrm{y} \pm \mathrm{a}, \mathrm{q} \pm \mathrm{b})$ in particular between a fourth quarter $(\mathbf{y}, \mathrm{q}=4)$ and the first quarter of the next year ($\mathbf{y}+\mathbf{1}$, $\mathrm{q}=1$)

It is impossible to ensure consistent comparisons in all three dimensions
7.1 (4) Overview of methods; evaluation criteria: comparisons, types of linking quarterly indices

y	$\mathrm{q}=1$	$\mathrm{q}=2$	$\mathrm{q}=3$	$\mathrm{q}=4$	annual ind.
0	I_{01}	I_{02}	$\mathrm{I}_{03} \longleftrightarrow$	I_{04}	I_{0}
1	$\mathrm{I}_{11} \downarrow$	I_{12}	I_{13}	I_{14}	I_{1}
2	I_{21}	I_{22}	I_{23}	I_{24}	I_{2}

Consistent comparisons in all directions

1. pure quantity comparison (same price "weights")
2. no breaks caused by the method

Annual overlap

series of indices all derived from multiplication (chainlinking) Indices are forming a chain in this direction
over the year (OY)

no linking in this direction fields gained by multiplication average of quarterly indices

7.1 (5) Overview of methods for chainlinking QNA

2. Aggregation (requirements of consistent aggregation)

AC1: additivity of volumes
AC2: decomposition of growth rates how a GDP component contributes to total GDP growth

AT: over intervals in time (time aggregation)
AT1: multiperiod identity (path dependence)
AT2: comparing periods of different length: consistency between cumulated QNA and direct ANA

All chaining procedures have poor aggregation properties!
3. Implementation (ease of compilation, data requirements) e.g. QO and OY require calculation of in addition to

$$
\begin{gathered}
\overline{\mathrm{V}}_{\mathrm{y}-1, \mathrm{y}-1, \mathrm{q}}=\sum_{\mathrm{i}} \overline{\mathrm{p}}_{\mathrm{i}, \mathrm{y}-1} \mathrm{q}_{\mathrm{i}, \mathrm{y}-1, \mathrm{q}} \\
\overline{\mathrm{~V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}}=\sum_{\mathrm{i}} \overline{\mathrm{p}}_{\mathrm{i}, \mathrm{y}-1} \mathrm{q}_{\mathrm{i}, \mathrm{y}, \mathrm{q}}
\end{gathered}
$$ need to re-value quarters at prices of the current year

7.1. (6) Overview of methods Other evaluation criteria

4. Is there a break at the beginning of a year?

5. Other problems, not studied here in detail (and partly common to all chainindex problems)

1. decomposition of growth rates into "contributions" of certain goods or subaggregates
AO-method: growth rates of the total aggregates $y, 1 \rightarrow y, 2 \rightarrow y, 3$ etc. can be consistently compared as they depend solely on volume changes (the same prices), yet when decomposed into "contributions" weights of the components are not constant (and depend on quantities)
2. effects on (cumulated) aggregates like fixed assets (gross and net), accumulated capital consumption and the use of the perpetual inventory method (PIM)
3. reflection of the seasonal pattern and effect of various seasonal adjustment methods when applied to chained QNA data using different linking methods
4. effects of non-additivity on econometric models (definitional equations, sign of balancing items)
7.1 (7) Methods and their evaluation

7.1 (8) Numerical example in the next section (1): assumptions
$>$ It is difficult to understand the three methods AO, QO, and OY without resorting to a mostly somewhat laborious numerical example. Formulas in many papers or presentations are wrong or at least not fully transparent.
$>$ Formulas are demonstrated using a numerical example (the numerical example of the IMF paper will also be presented): The fictitious data average* annual prices and quantities in 2005 to 2008 are as follows**:

		2005	2006	2007	2008	2009
average price of good A	$\mathbf{1 1 . 5 5}$	$\mathbf{1 2 . 6 3}$	$\mathbf{2 3 . 8 7}$	$\mathbf{3 6 . 9 9}$	$\mathbf{4 4 . 6 1}$	
average price of good B	$\mathbf{6 7 . 2 7}$	$\mathbf{8 1 . 0 0}$	$\mathbf{9 5 . 8 3}$	$\mathbf{1 0 8 . 7 5}$	$\mathbf{1 7 6 . 0 0}$	
index (2005 = 100)	A	100	109.35	206.67	320.26	386.23
	B	100	120.42	142.45	161.66	261.62
av. quantity of good A	$\mathbf{2 5}$	$\mathbf{4 7 . 5}$	$\mathbf{6 5}$	$\mathbf{8 3 . 7 5}$	$\mathbf{7 7 . 5}$	
av. quantity of good B	$\mathbf{2 . 7 5}$	$\mathbf{2 . 5}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{2 . 5}$	
index (2005 = 100)	A	100	190	260	335	310
	B	100	90.9	109.1	72.7	90.9

** assumptions different from IMF-example

7.1 (9) Numerical example in the next section (1): Prices and quantities

in contrast: IMF example \rightarrow 7.4.4
other possible numerical examples
(Kuhnert):

1. substitution effect

- strong • weak
$\begin{array}{ll}\text { 2. trend } & \text { yes } \bullet \text { no } \\ \text { 3. cycle } & \text { yes } \bullet \text { no }\end{array}$

7.1 (10) Numerical example in the next section (3): two types of volumes

$>$ The fictitious data for 2005 to 2008 are such that volumes at constant (and average) prices of the base year 2005 and volumes at (average) prices of the previous year (and thus also the implicit price indices) differ a lot

	2005	2006	2007	2008	2009
(1) value (w) current prices	473.75	802.50	1838.75	3315.00	3897.50
(2) vol. const. 2005 prices	473.75	716.81	952.56	1101.86	1063.31
(3) volume at y-1 prices*	473.75	716.81	1064.05	2190.39	3138.22
implicit price index $(1) /(2)^{* *}$	100	111.95	193.03	300.85	366.54
implicit price index $(1) /(3)^{* *}$	100	111.95	172.81	151.34	124.19

It is legitimate to compare the two volumes (row 2 and 3) and form indices 2005 $=100$ as done by deriving the implicit price indices

* multiplying links like $716.81 / 473.75=\mathbf{1 . 5 1 3 1}$ and $952.56 / 716.81=\mathbf{1 . 3 2 9}$ etc amounts to the same index $1.5131 * 1.329=\mathbf{2 . 0 1 0 7}$ etc. (716.81 cancels out)
** rows $1-3$ transformed into indices
7.1 (11) Numerical example in the next section (4): two types of volumes

Volumes at (average) y-1 prices are the basis of all three methods

$$
\overline{\mathbf{V}}_{y, y-1, q}=\sum_{i} \bar{p}_{i, y-1} q_{i, y, q}
$$ (AO, QO, and OY).

They seem to imply a significantly higher growth and lower inflation rate than volumes at constant prices of a fixed base period (e.g. 2005)

indices on the basis of row	2005	2006	2007	2008	2009
(1) value (w) current prices	100	169.39	388.13	699.73	822.69
(2) vol. const. 2005 prices	100	151.31	201.07	232.58	224.45
(3) volume at y-1 prices	100	151.31	224.60	462.35	662.42

However, it turns out that the final results (after chaining) generated by AO, QO, and OY are not very different from the traditional method using constant 2005 prices.

The reason is that volumes at $\mathbf{y} \mathbf{- 1}$ prices are not simply related to the base period value - like volumes at constant prices of 2005 - but to other terms (see 7.2.6) and thereafter chain-linked

7.2 (1) Steps common to all three methods: fundamental definitions and formulas

1. General principles of volume definition (price weights in volumes)

- the same prices for all quarters of the year as annual deflator (not prices of the previous quarter)
- quantity weighted average annual prices (= unit values) rather than unweighted arithmetic mean of quarterly prices (otherwise eq. $\rightarrow \mathbf{6}$ would not hold)
- only annual chaining using unit value annual deflators of the preceding year (not of some constant base year) § 9.7-8, § 9.13-15*

2. Value and unit value

$$
\begin{gathered}
\overline{\mathrm{p}}_{\mathrm{iy}}=\frac{\sum_{\mathrm{q}} \mathrm{p}_{\mathrm{iyq}} \mathrm{q}_{\mathrm{iyq}}}{\sum_{\mathrm{q}} \mathrm{q}_{\mathrm{iyq}}}=\frac{\mathrm{W}_{\mathrm{iy}}}{\mathrm{Q}_{\mathrm{iy}}} \\
\mathrm{~W}_{\mathrm{y}}=\sum_{\mathrm{q}} \mathrm{~W}_{\mathrm{yq}}=\sum_{\mathrm{q}} \sum_{\mathrm{i}} \mathrm{p}_{\mathrm{iyq}} \mathrm{q}_{\mathrm{iyq}}
\end{gathered}
$$

[^1]7.2 (2) Steps common to all three methods: fundamental definitions and formulas
3. Various concepts of "volume" (at average prices of $y-1$) for quarters
$\mathrm{V}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}}=\mathrm{V}_{\text {quantities, prices, quarter of } \mathrm{y}}$ if applicable

prices	quarter-specific price	annual average price (unit value)
of y	(2) $\mathrm{W}_{\mathrm{yq}}=\sum_{\mathrm{i}} \mathrm{p}_{\mathrm{iyq}} \mathrm{q}_{\mathrm{iyq}}=\mathrm{V}_{\mathrm{y}, \mathrm{y}, \mathrm{q}}$	(4) $\overline{\mathrm{V}}_{\mathrm{y}, \mathrm{y}, \mathrm{q}}=\sum_{\mathrm{i}} \overline{\mathrm{p}}_{\mathrm{i}, \mathrm{y}} \mathrm{q}_{\mathrm{iy}, \mathrm{q}}$
of $\mathrm{y}-1$	(3) $\mathrm{V}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}}=\sum_{\mathrm{i}} \mathrm{p}_{\mathrm{i}, \mathrm{y}-1, \mathrm{q}} \mathrm{q}_{\mathrm{i}, \mathrm{y}, \mathrm{q}}$	(5) $\overline{\mathrm{V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}}=\sum_{\mathrm{i}} \overline{\mathrm{p}}_{\mathrm{i}, \mathrm{y}-\mathrm{l}} \mathrm{q}_{\mathrm{i}, \mathrm{y}, \mathrm{q}}$

(4) is used as special case $y=0$ for the start in all methods (4a) or as (4b) in the OY method (and esp. for $\mathrm{q}=4$ in the $\mathbf{Q O}$ method)

$$
\begin{aligned}
& \overline{\mathrm{V}}_{0,0, \mathrm{q}}=\sum_{\mathrm{i}} \overline{\mathrm{p}}_{\mathrm{i}, 0, \mathrm{q}} \mathrm{q}_{\mathrm{i}, 0, \mathrm{q}} \\
& \overline{\mathrm{~V}}_{\mathrm{y}-1, \mathrm{y}-1, \mathrm{q}}=\sum_{\mathrm{i}} \overline{\mathrm{p}}_{\mathrm{i}, \mathrm{y}-1, \mathrm{q}} \mathrm{q}_{\mathrm{i}, \mathrm{y}-1, \mathrm{q}}
\end{aligned}
$$

(6) $\overline{\mathrm{V}}_{0,0, \mathrm{q}}=\sum_{\mathrm{i}} \overline{\mathrm{i}}_{\mathrm{ioq}} \mathrm{q}_{\mathrm{i} 0 \mathrm{q}}=\mathrm{W}_{0, \mathrm{q}}=\sum_{\mathrm{i}} \mathrm{p}_{\mathrm{i} 0 \mathrm{q}} \mathrm{q}_{\mathrm{ioq}}$
(3) Is the least relevant formula. In the formula handout it is shown, that (2), (4) and (5) indeed yield different results
7.2 (3) Steps common to all three methods: volumes (at average prices of $y-1$) 2005-2006

$\begin{aligned} & 0=2000 \\ & 1=2006 \end{aligned}$	commodity A			commodity B				
y q 0	$\mathrm{p}_{\text {Ayq }}$	$\mathrm{q}_{\text {Ayq }}$	$\mathrm{w}_{\text {Ayq }}$	$\mathrm{p}_{\mathrm{BV} \mathrm{Vq}}$	$\mathrm{q}_{\text {Byq }}$	$\mathrm{w}_{\text {Byq }}$	value W	volume V
$0{ }^{0} 1$	10	20	200	50	2	100	300*	365.55*
2	15	25	375	65	2	130	505**	423.30
3	11	30	330	70	3	210	540	548.32
4	10	25	250	75	4	300	550	557.84
sum/aver.	11.55	100	1155	67.27	11	740	473.75 ${ }^{\text {\# }}$	473.75
11	11	40	440	80	2	160	600	596.55**
2	12	45	540	85	2	170	710	654.30
3	13	50	650	80	3	240	890	779.32
4	14	55	770	80	3	240	1010	837.07
sum/aver.	12.63	190	2400	81.00	10	810	802.50	716.81

$11.55=\Sigma \mathrm{p}_{\mathrm{A}} \mathrm{q}_{\mathrm{A}} / \Sigma \mathrm{q}_{\mathrm{A}}=1155 / 100$
$12.63=2400 / 190$
$\begin{array}{ll}67.27= & \text { values }=\mathrm{W} \\ 740 / 11 & *=100+200\end{array}$
** $=375+130$

$$
*=20 * 11.55+2 * 67.27
$$

$$
* *=40 * 11.55+2 * 67.27(5)
$$

7.2 (4) Steps common to all three methods: volumes (at average prices of $\mathrm{y}-1$) 2007-2009

		commodity A		commodity B		
y	q	$\mathrm{p}_{\text {Ayq }}$	$\mathrm{q}_{\text {Ayq }}$	$\mathrm{p}_{\mathrm{BVyq}}$	$\mathrm{q}_{\text {Byq }}$	value W
2	1	18	60	90	4	1440
0	2	25	55	95	4	1755
0	3	30	70	100	2	2300
7	4	22	75	105	2	1860
2	1	33	80	100	2	2840
0	2	40	85	95	2	3590
0	3	35	90	110	2	3370
8	4	40	80	130	2	3460
	1	41	70	185	4	3610
0	2	39	90	160	2	3830
0	3	45	80	170	2	3940
9	4	55	70	180	2	4210

This slide is simply for the years 2007 - 2009 the continuation of the preceding slide
some quantities are needed later (for demonstrations in section 7.5.1)
\longleftarrow in particular 07,2-07.4 and 09.1-09.2
average annual prices*

year	A	B
2007	23.87	95.83
2008	36.99	108.75
2009	44.61	176.00

figures are rounded

* they are unit values (= quantity weighted average prices)
7.2 (5) Steps common to all three methods: values, volumes and links (2005-2007)

value	vol. (05)*	link (06)	vol. (06)	link (07)	index	
300	$\begin{aligned} & 365.55 \\ & 423.30 \\ & 548.32 \\ & 557.84 \end{aligned}$				77.16	$=(365.55 / 473.75) * 100$
$\begin{array}{ll} 505 \text { in } \\ 540 \text { స్ } \end{array}$		Eq. (4a)			$89.35 \times$	$=(423.30 / 473.75) * 100$
550					117.75	
473.75	473.75 **				100	The three methods differ with respect to the definition and computation of the links
$\begin{aligned} & 600 \\ & 710 \text { た } \\ & 890 \text { ते } \\ & 1010 \end{aligned}$	$\begin{aligned} & 596.55 \\ & 654.30 \\ & 779.32 \\ & 837.07 \\ & \hline \end{aligned}$	(5) Ind lin	ex continu s for 06	d using	quarterly index	
802.50	716.81**				annua/ index	
$\begin{aligned} & 1440 \\ & 1755 \\ & 2300 \\ & 1860 \end{aligned}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { using } \emptyset \text { prices } \\ \text { of } 2006 \text { (pre- } \\ \text { ceding year) }(5) \end{array} \end{array}$		$\begin{aligned} & 1081.89 \\ & 1018.74 \\ & 1046.21 \\ & 1109.37 \end{aligned}$			Index will be continued using the links for 07
1838.75			1064.05**		annual index	

* In prices of $2005 \quad{ }^{* *}$ unweighted arithmetic mean

7.2 (6) Steps common to all three methods: values, volumes and links (2007-2009)

value	vol. (06)	link (07)	vol. (07)	link (08)	vol. (08)	$\begin{aligned} & \hline \begin{array}{l} \text { link } \\ (09) \end{array} \end{aligned}$	index
$\begin{aligned} & 1440 \text { रे } \\ & 1755 \\ & 2300 \\ & 1860 \end{aligned}$	$\begin{aligned} & \hline 1081.89 \\ & 1018.74 \\ & 1046.21 \\ & 1109.37 \end{aligned}$						
1838.75	1064.05						
$\begin{array}{\|l} \hline 2840 \approx \\ 3590 \\ 3370 \\ 3460 \end{array}$			$\begin{aligned} & 2100.90 \\ & 2220.22 \\ & 2339.55 \\ & 2100.90 \end{aligned}$				quarterly index
3315	1		2190.39				annual index
$\begin{aligned} & 3610 \text { 佥 } \\ & 3830 \\ & 3940 \\ & 4210 \end{aligned}$	$\frac{\bar{V}_{\mathrm{V}, \mathrm{y}-1}}{}$	$q=\sum$	$\overline{\mathrm{p}}_{\mathrm{i}, \mathrm{y}-1}$	$q_{i, y, q}$	$\begin{aligned} & 3023.96 \\ & 3546.16 \\ & 3176.31 \\ & 2806.46 \end{aligned}$		\rightarrow quarterly index
3897.50					3138.22		annual index

7.2 (7) General approach: all methods

A quarter q of year y at average prices of the preceding year $y-1$, that is is related to

Annual overlap (AO)	a forth of the unweighted average of values of the preceding year y-1, that is to $\mathrm{W}_{\mathrm{y}-1} / 4 *$
Quarterly overlap (QO)	the volume of $\mathrm{q}=4$ in y-1 at average prices of $\mathrm{y}-1 \quad$ (eq. (4b) for all quarters)
Over the year (OY)	the same quarter of the preceding year y-1 (that is $\mathrm{q}, \mathrm{y}-1)$ at average prices of the preceding year $\mathrm{y}-1 \quad$ (eq. (4b) for $\mathrm{q}=4)$

For $\mathrm{q}=4$ both methods QO and OY yield the same result

[^2]
7.3 Formulas for the indices

In this section we show - by means of formulas and a numerical example - how

- the index for $\mathrm{y}, \mathrm{q} ; \mathrm{y}, \mathrm{q}+1 ; \ldots$ (sequence of quarterly indices) is derived
- annual indices (for $\mathrm{y}, \mathrm{y}+1, .$.) are derived from linking and how they are related to the quarterly indices
in the case of the three techniques
7.3.1 annual overlap (AO)
7.3.2 quarterly overlap (QO)
7.3.3 over the year (OY)

Later (section 7.5) it is shown which

In between (7.4)
numerical results

- comparisons (in the three directions),
- aggregations (e.g. of QNA figures to directly gained ANA data) and
- decompositions of growth rates (into "contributions" of goods to growth)
can consistently be made
7.3.1 (1) Annual overlap (AO): fundamental formulas

	link	volume index
quarterly	(7) $L_{(y-1) \rightarrow y, q}^{A O}=\frac{\overline{\mathrm{V}}_{y, y-1, q}}{W_{y-1} / 4}$	${ }^{(8)} \mathrm{I}_{\mathrm{y}, \mathrm{q}}^{\mathrm{AO}}=\mathrm{I}_{\mathrm{y}-1}^{\mathrm{AO}} \cdot \mathrm{~L}_{(\mathrm{y}-1) \rightarrow \mathrm{y}, \mathrm{q}}^{\mathrm{AO}}$
annually	$\begin{aligned} & {\underset{L}{(y-1) \rightarrow y}}_{\mathrm{AO}}^{\text {AO }}=\frac{\sum_{q} \mathrm{~L}_{(y-1) \rightarrow y, \mathrm{q}}^{\mathrm{AO}}}{4} \text { or } \\ & \mathrm{L}_{(\mathrm{y}-1) \rightarrow \mathrm{y}}^{\mathrm{AO}}=\overline{\mathrm{V}}_{\mathrm{y}, \mathrm{y}-1} / \mathrm{W}_{\mathrm{y}-1} \end{aligned}$	(10) $\mathrm{I}_{\mathrm{y}}^{\mathrm{AO}}=\mathrm{I}_{\mathrm{y}-1}^{\mathrm{AO}} \cdot \mathrm{~L}_{(\mathrm{y}-\mathrm{l}) \rightarrow \mathrm{y}}^{\mathrm{AO}}$

aggregation of QNA and direct ANA are compatible
(9)

$$
\mathrm{L}_{(\mathrm{y}-1) \rightarrow \mathrm{y}}^{\mathrm{AO}}=\frac{\sum_{\mathrm{q}} \overline{\mathrm{~V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}}}{\sum_{\mathrm{q}} \mathrm{~W}_{\mathrm{y}-1 . \mathrm{q}}}=\frac{\overline{\mathrm{V}}_{\mathrm{y}, \mathrm{y}-1}}{\mathrm{~W}_{\mathrm{y}-1}}=\frac{\frac{1}{4} \sum_{\mathrm{q}} \overline{\mathrm{~V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}}}{\frac{1}{4} \mathrm{~W}_{\mathrm{y}-1}}=\frac{\sum_{\mathrm{q}} \mathrm{~L}_{(\mathrm{y}-1) \rightarrow \mathrm{y}, \mathrm{q}}^{\mathrm{AO}}}{4}
$$

This formula proves that growth rate of annual index equals growth of accumulated QNA aggregates (= "time consistency")

7.3.1 (2) Annual overlap (AO): in one single formula

Index I^{AO} for quarter $\mathrm{q}=2$ in year $\mathrm{y}=4$ expressed in one single formula

$$
\begin{aligned}
& \left(\prod_{\mathrm{t}=1}^{\mathrm{y}-1} \frac{\sum_{\mathrm{q}} \overline{\mathrm{~V}}_{\mathrm{t}, \mathrm{t}-1, \mathrm{q}}}{\sum_{\mathrm{q}} \mathrm{~W}_{\mathrm{t}-1 . \mathrm{q}}}\right) \frac{\overline{\mathrm{V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}}}{\mathrm{~W}_{\mathrm{y}-1 . \mathrm{q}} / 4}=\left(\prod_{\mathrm{t}=1}^{\mathrm{y}-1} \frac{\sum_{\mathrm{q}} \overline{\mathrm{~V}}_{\mathrm{t}, \mathrm{t}-1, \mathrm{q}}}{\mathrm{~W}_{\mathrm{t}-1}}\right) \frac{\overline{\mathrm{V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}}}{\mathrm{~W}_{\mathrm{y}-1} / 4} \\
& =\left(\frac{\sum_{\mathrm{q}} \sum_{i} \bar{p}_{0} \mathrm{q}_{1 \mathrm{q}}}{\sum_{\mathrm{q}} \sum_{i} \mathrm{p}_{0 \mathrm{q}} \mathrm{q}_{0 \mathrm{q}}} \frac{\sum_{\mathrm{q}} \sum_{\mathrm{i}} \overline{\mathrm{p}}_{1} \mathrm{q}_{2 \mathrm{q}}}{\sum_{\mathrm{q}} \sum_{\mathrm{i}} \mathrm{p}_{1 \mathrm{q}} \mathrm{q}_{1 \mathrm{q}}} \frac{\sum_{\mathrm{q}} \sum_{\mathrm{i}} \overline{\mathrm{p}}_{2} \mathrm{q}_{3 \mathrm{q}}}{\sum_{\mathrm{q}} \sum_{\mathrm{i}} \mathrm{p}_{2 \mathrm{q}} \mathrm{q}_{2 \mathrm{q}}}\right) \frac{\sum_{\mathrm{i}} \overline{\mathrm{p}}_{3} \mathrm{q}_{4 \mathrm{q}=2}}{\sum_{\mathrm{q}} \sum_{\mathrm{i}} \mathrm{p}_{3 \mathrm{q}} \mathrm{q}_{3 \mathrm{q}} / 4}
\end{aligned}
$$

Year 4 and quarter $\mathrm{q}=3$

$$
\left(\frac{\sum_{\mathrm{q}} \sum_{\mathrm{i}} \overline{\mathrm{p}}_{0} \mathrm{q}_{1 \mathrm{q}}}{\sum_{\mathrm{q}} \sum_{\mathrm{i}} \mathrm{p}_{\mathrm{oq}} \mathrm{q}_{0 \mathrm{q}}} \frac{\sum_{\mathrm{q}} \sum_{\mathrm{q}} \overline{\mathrm{p}}_{1} \mathrm{q}_{2 \mathrm{q}}}{\sum_{\mathrm{q}} \sum_{\mathrm{i}} \mathrm{p}_{1 \mathrm{q}} \mathrm{q}_{1 \mathrm{q}}} \frac{\sum_{\mathrm{q}} \sum_{\mathrm{i}} \overline{\mathrm{p}}_{2} \mathrm{q}_{3 \mathrm{q}}}{\sum_{\mathrm{q}} \sum_{\mathrm{i}} \mathrm{p}_{2 \mathrm{q}} \mathrm{q}_{2 \mathrm{q}}}\right) \frac{\sum_{\mathrm{p}_{\mathrm{p}}} \overline{\mathrm{p}}_{3} \mathrm{q}_{4 \mathrm{q}=3}}{\sum_{\mathrm{q}} \sum_{\mathrm{i}} \mathrm{p}_{3 \mathrm{q}} \mathrm{q}_{3 \mathrm{q}} / 4}
$$

Growth factor year $4, q=2 \rightarrow y=4, q=3$

$$
\frac{\mathrm{I}_{4,3}^{\mathrm{AO}}}{\mathrm{I}_{4,2}^{\mathrm{AO}}}=\frac{\sum_{\mathrm{i}} \overline{\mathrm{p}}_{3} \mathrm{q}_{4 \mathrm{q}=3}}{\sum_{\mathrm{i}} \overline{\mathrm{p}}_{3} \mathrm{q}_{4 \mathrm{q}=2}}
$$

Same growth factors as QO method (except for $\mathrm{q}=1$)

7.3.1 (3) Annual overlap (AO) 2005-2007

value	vol. (05)*	link (06)	vol. (06)	link (07)	index	$\begin{align*} & \mathbf{a}=\text { unweighted arithm. } \\ & \text { mean }=W_{v} / 4 \tag{2} \end{align*}$
300	365.55				77.16	
505	423.30				89.35	$\begin{gathered} \text { b }: 596.55 / 473.75= \\ 1.2592(7) \\ \mathbf{c}: 654.30 / 473.75= \\ 1.3811 \quad(7) \end{gathered}$
540 О్ని	548.32				115.74	
550	557.84				117.75	
473.75	473.75 a				100	
600	596.55	125.92 b			125.92	$\begin{aligned} & \mathbf{d}: 716.81 / 473.75= \\ & 1.5130 \text { or } \\ & \text { unweighted mean } \end{aligned}$
710 -	654.30	138.11 c			138.11	
890 ¢	779.32	164.50	(8)		164.50	
1010	837.07	176.69			176.69	
802.50	716.81	151.30 d			151.30	e : 1081.89/802.5
1440	$\mathrm{W}_{2006 / 4}=802.5$		1081.89	134.82 e	203.98 f	$=1081.74 / 802.5$$\mathbf{f}: 151.3 * 1.3482$
1755 산			1018.74	126.95 e	192.07 f	
2300 ¢े			1046.21	130.37	197.25	
1860			1109.37	138.24	209.16	$\begin{aligned} \mathbf{f}: & 151.3 * 1.3482 \\ & =203.98 \\ & 151.3 * 1.2695 \\ & =192.07 \end{aligned}$
1838.75			1064.05	132.59	200.62	
* In prices of 2005		Verify: the same quarter-on-quartergrowth rates as in the case of QO				

7.3.1 (4) Annual overlap (AO) 2007-2009

value	vol. (06)	link (07)	vol. (07)	link (08)	vol. (08)	link (09)	index
$\begin{aligned} & \cdots \\ & \cdots \\ & 1860 \text { 見 } \end{aligned}$	$\begin{gathered} \ldots \\ 1109.37 \end{gathered}$						209.16
1838.75	1064.05						200.62
$\begin{aligned} & 2840 \\ & 3590 \\ & 3370 \\ & 3460 \end{aligned}$			$\begin{aligned} & 2100.90 \\ & 2220.22 \\ & 2339.55 \\ & 2100.90 \end{aligned}$	$\begin{aligned} & 114.26 \mathbf{a} \\ & 120.75 \\ & 127.24 \\ & 114.26 \end{aligned}$			$\begin{aligned} & 229.22 \\ & 242.24 \text { b } \\ & 255.26 \\ & 229.22 \end{aligned}$
3315			2190.39	119.12 c			238.98 d
$\begin{aligned} & 3610 \\ & 3830 \\ & 3940 \\ & 4210 \end{aligned} \text { 。े }$	$\mathrm{W}_{2007 / 4}=1838.75$				$\begin{aligned} & 3023.96 \\ & 3546.16 \\ & 3176.31 \\ & 2806.46 \end{aligned}$	$\begin{aligned} & 91.22 \mathbf{e} \\ & 106.97 \\ & 95.82 \\ & 84.66 \end{aligned}$	$\begin{aligned} & 218.00 \\ & 255.65 \\ & 228.99 \\ & 202.32 \end{aligned}$
3897.50					3138.22	94.67	226.24

$$
\begin{array}{ll}
\mathbf{a}=2100.9 / 1838.75=1.1426 & \mathbf{c}=2190.39 / 1838.75=1.1912 \\
\mathbf{b}=200.62 * 1.2075 & \mathbf{d}=200.62 * 1.1912 \quad \mathbf{e}=3023.96 / 3315=0.9122
\end{array}
$$

7.3.2 (1) Quarterly overlap (QO): fundamental formulas

	link	volume index
quar- terly	$\begin{aligned} & (11)^{*} \\ & L_{y-1, q=4 \rightarrow y, q}^{\mathrm{QO}} \end{aligned}=\frac{\overline{\mathrm{V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}}}{\overline{\mathrm{~V}}_{\mathrm{y}-1, \mathrm{y}-\mathrm{l}, \mathrm{q}=4}}$	$(12)^{*} \quad \mathrm{I}_{\mathrm{y}, \mathrm{q}}^{\mathrm{QO}}=\mathrm{I}_{\mathrm{y}-1, \mathrm{q}=4}^{\mathrm{QO}} \mathrm{~L}_{\mathrm{y}-1, \mathrm{q}=4 \rightarrow \mathrm{y}, \mathrm{q}}^{\mathrm{QO}}$
annual- ly	$\begin{aligned} & (13) \\ & \mathrm{L}_{\mathrm{y}-1, \mathrm{q}=4 \rightarrow \mathrm{y}}^{\mathrm{QO}} \end{aligned}=\frac{\sum_{\mathrm{q}} \mathrm{~L}_{\mathrm{y}-1, \mathrm{q}=4 \rightarrow \mathrm{y}, \mathrm{q}}^{\mathrm{QO}}}{4}$	$\text { (14) } \mathrm{I}_{\mathrm{y}}^{\mathrm{QO}}=\mathrm{I}_{\mathrm{y}-1, \mathrm{q}=4}^{\mathrm{QO}} \mathrm{~L}_{\mathrm{y}-1, \mathrm{q}=4 \rightarrow \mathrm{y}}^{\mathrm{QO}} \underset{\text { not } \mathrm{I}_{\mathrm{y}-1}^{\mathrm{AO}}}{ }$

(11*) start $(y=1): \quad L_{0, q=4 \rightarrow, \mathrm{q}}^{\mathrm{QO}}=\frac{\overline{\mathrm{V}}_{1,0, \mathrm{q}}}{\overline{\mathrm{V}}_{0,0, \mathrm{q}=4}}$
(12a) starting with $\quad \mathrm{I}_{0, \mathrm{q}=4}^{\mathrm{QO}}=\frac{\overline{\mathrm{V}}_{0,0, \mathrm{q}}}{\mathrm{W}_{0} / 4}$
Note: not the annual indices but only y, q = 4 indices can be written as a "chain" (product)

The fact that $L_{y-1, \mathrm{q}=4 \rightarrow \mathrm{y}}^{\mathrm{QO}}=\frac{\frac{1}{4} \sum_{\mathrm{q}} \overline{\mathrm{V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}}}{\overline{\mathrm{V}}_{\mathrm{y}-1, \mathrm{y}-1, \mathrm{q}=4}}=\frac{\sum_{\mathrm{q}} \mathrm{L}_{\mathrm{y}-1, \mathrm{q}=4 \rightarrow \mathrm{y}, \mathrm{q}}^{\mathrm{OY}}}{4}$
should not be misunderstood as if aggregation of QNA and direct ANA were compatible (time consistent): see formula handout p. 7 and eq. 13b on the following slide

7.3.2 (2) QO fundamental formulas: sequence of annual indices

$$
\mathrm{I}_{\mathrm{y}, 4}^{\mathrm{QO}}=\frac{\overline{\mathrm{V}}_{1,0, \mathrm{q}=4}}{\frac{1}{4} \mathrm{~W}_{0}} \frac{\overline{\mathrm{~V}}_{2,1, \mathrm{q}=4}}{\overline{\mathrm{~V}}_{\mathrm{l}, 1, \mathrm{q}=4}} \frac{\overline{\mathrm{~V}}_{3,2, \mathrm{q}=4}}{\overline{\mathrm{~V}}_{2,2, \mathrm{q}=4}} \ldots \frac{\overline{\mathrm{~V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}=4}}{\overline{\mathrm{~V}}_{\mathrm{y}-1, \mathrm{y}-\mathrm{l}, \mathrm{q}=4}}
$$

The sequence is given by (14a, 14b , ...)

$$
\begin{aligned}
& \mathrm{I}_{1}^{\mathrm{OO}}=\mathrm{I}_{0, \mathrm{q}=4}^{\mathrm{OO}} \mathrm{~L}_{0, \mathrm{q}=4 \rightarrow 1}^{\mathrm{QO}}=\frac{\overline{\mathrm{V}}_{0,0, \mathrm{q}=4}}{\mathrm{~W}_{0} / 4} \frac{\frac{1}{4} \sum_{\mathrm{q}} \overline{\mathrm{~V}}_{1,0, \mathrm{q}}}{\overline{\mathrm{~V}}_{0,0, \mathrm{q}=4}} \\
& \mathrm{I}_{2}^{\mathrm{QO}}=\mathrm{I}_{1, \mathrm{q}=4}^{\mathrm{QO}} \mathrm{~L}_{1, \mathrm{q}=4 \rightarrow 2}^{\mathrm{QO}}=\frac{\overline{\mathrm{V}}_{0,0, \mathrm{q}=4}}{\mathrm{~W}_{0} / 4} \frac{\overline{\mathrm{~V}}_{1,0, \mathrm{q}=4}}{\frac{1}{4}} \frac{\bar{V}_{\mathrm{q}}}{\overline{\mathrm{~V}}_{2, \mathrm{a}, \mathrm{q}=4}} \\
& \overline{\mathrm{~V}}_{1,1, \mathrm{q}=4}
\end{aligned}
$$

$$
\mathrm{I}_{3}^{\mathrm{QO}}=\mathrm{I}_{2, \mathrm{q}=4}^{\mathrm{QO}} \mathrm{~L}_{2, \mathrm{q}=4 \rightarrow 3}^{\mathrm{QO}}=\frac{\overline{\mathrm{V}}_{\mathrm{0}, \mathrm{oq}=4}}{\mathrm{~W}_{0} / 4} \frac{\overline{\mathrm{~V}}_{1,0, \mathrm{q}=4}}{\overline{\mathrm{~V}}_{0,0, \mathrm{q}=4}} \frac{\overline{\mathrm{~V}}_{2,1, \mathrm{q}=4}}{\overline{\mathrm{~V}}_{1,1, \mathrm{q}=4}} \frac{\frac{1}{4}}{\frac{\sum_{\mathrm{q}}}{\overline{\mathrm{~V}}_{3,2, \mathrm{q}}}} \overline{\mathrm{~V}}_{2,2, \mathrm{q}=4}
$$

The growth factor of the annual volume is not a sum or unweighted average of quarterly growth factors but a weighted sum
$\begin{aligned} & \begin{array}{l}\text { (13b) annual } \\ \text { growth: } \\ \text { weights in brackets }\end{array}\end{aligned} \frac{\mathrm{I}_{\mathrm{y}}^{\mathrm{QO}}}{\mathrm{I}_{\mathrm{y}-1}^{\mathrm{QO}}}=\frac{\mathrm{I}_{\mathrm{y}, \mathrm{q}=1}^{\mathrm{QO}}}{\mathrm{I}_{\mathrm{y}-1, \mathrm{q}=1}^{\mathrm{QO}}}\left(\frac{\mathrm{I}_{\mathrm{y}-1, \mathrm{q}=1}^{\mathrm{QO}}}{4 \cdot \mathrm{I}_{\mathrm{y}-1}^{\mathrm{QO}}}\right)+\ldots+\frac{\mathrm{I}_{\mathrm{y}, \mathrm{q}=4}^{\mathrm{QO}}}{\mathrm{I}_{\mathrm{y}-1, \mathrm{q}=4}^{\mathrm{QO}}}\left(\frac{\mathrm{I}_{\mathrm{y}-1, \mathrm{q}=4}^{\mathrm{QO}}}{4 \cdot \mathrm{I}_{\mathrm{y}-1}^{\mathrm{QO}}}\right) \begin{aligned} & \text { no "time } \\ & \text { consistency" }\end{aligned}$

7.3.2 (3) QO index in one formula

$$
\mathrm{I}_{\mathrm{y}, \mathrm{q}}^{\mathrm{OO}}=\frac{\sum \overline{\mathrm{p}}_{0} \mathrm{q}_{l ; 4}}{\mathrm{~W}_{0} / 4} \cdot\left(\prod_{\mathrm{t}=2}^{\mathrm{y}-1} \frac{\sum \overline{\mathrm{p}}_{\mathrm{t}-1} \mathrm{q}_{\mathrm{t} ; 4}}{\sum \overline{\mathrm{p}}_{\mathrm{t}-1} \mathrm{q}_{\mathrm{t}-1 ; 4}}\right) \cdot \frac{\sum_{\mathrm{p}} \overline{\mathrm{y}}_{\mathrm{y}-1} \mathrm{q}_{\mathrm{y} ; \mathrm{q}}}{\sum \overline{\mathrm{p}}_{\mathrm{y}-1} \mathrm{q}_{\mathrm{y}-1 ; 4}}
$$

To better understand the formula we again assume $y=4$ and $q=2$ and use our notation

$$
I_{4 ; 2}^{\mathrm{QO}}=\frac{\overline{\mathrm{V}}_{1,0, \mathrm{q}=4}}{\mathrm{~W}_{0} / 4}\left(\frac{\overline{\mathrm{~V}}_{2,1, \mathrm{q}=4}}{\overline{\mathrm{~V}}_{1,1, \mathrm{q}=4}} \cdot \frac{\overline{\mathrm{~V}}_{3,2, \mathrm{q}=4}}{\overline{\mathrm{~V}}_{2,2, \mathrm{q}=4}}\right) \frac{\overline{\mathrm{V}}_{4,3, \mathrm{q}=2}}{\overline{\mathrm{~V}}_{3,3, \mathrm{q}=4}}
$$

verified with our numerical example

$$
\mathrm{I}_{4 ; 2}^{\mathrm{OO}}=\frac{837.07}{473.75}\left(\frac{1109.37}{937.74} \cdot \frac{2100.90}{1981.57}\right) \frac{3546.16}{3176.31}=2.4742
$$

$$
1.7669 \longrightarrow \quad \text { for the numerators see slide } 30 \text { and } 31
$$

$$
\text { growth factor } \mathrm{y}=4, \mathrm{q}=2 \rightarrow \mathrm{y}=4, \mathrm{q}=3 \quad \frac{\mathrm{I}_{4,3}^{\mathrm{QO}}}{\mathrm{I}_{4,2}^{\mathrm{QO}}}=\frac{\mathrm{I}_{4,3}^{\mathrm{AO}}}{\mathrm{I}_{4,2}^{\mathrm{AO}}}=\frac{\sum_{i} \overline{\mathrm{p}}_{3} q_{4 \mathrm{q}=3}}{\sum_{\mathrm{i}} \overline{\mathrm{p}}_{3} q_{4 \mathrm{q}=2}} \quad \text { cp slide } 24
$$

7.3.2 (4) Quarterly overlap (QO) 2005-2007

value	vol. (05)	link (06)	vol. (06)	link (07)	index
300	365.55				77.16
505 in	423.30				89.35
540 ㅅ	548.32				115.74
550	557.84				117.75
473.75	473.75				100
600	596.55	106.94 a			125.92 c
710	654.30	117.29			138.11 d
890 \%	779.32	139.70 b			164.50
1010	837.07	150.06	937.74 f		176.69
802.50	716.81	128.50 e			151.30 e
1440			1081.89	115.37 g	203.85 h
1755			1018.74	108.64	191.95
2300)			1046.21	111.57	197.13
1860 N			1109.37	118.30	209.03
1838.75			1064.05	113.47 i	200.49 i

a: 596.55/557.84
b: 779.32/557.84
c: $117.75 * 1.0694$
d: $117.75 * 1.1729$
e: $716.81 / 557.84=$ 1.285 and $151.3=117.75 * 1.285$
f: quantities of 2006_IV at average prices of 2006 (4 b)
$=55 * 12.63+3 * 81$
g: 1081.89/937.74
h: $176.69 * 1.1537$
i: $1.133=1064.05 / 937.74$ and $176.69 * 1.1347=200.49$

7.3.2 (5) Quarterly overlap (AO) 2007-2009

value	vol. (06)	link (07)	vol. (07)	link (08)	vol. (08)	link (09)	index
1440	1081.89	115.37					203.85
1755	1018.74	108.64					191.95
2300 ते	1046.21	111.57					197.13
1860	1109.37	118.30	1981.57				209.03
1838.75	1064.05	113.47					200.49
2840			2100.90	106.02*			221.62
3590			2220.22	112.04			234.20**
3370 ®			2339.55	118.07			246.79
3460 ले			2100.90	106.02	3176.31		221.62
3315			2190.39	110.54			231.06
3610					3023.96	95.20	210.99
3830					3546.16	111.64	247.42
3940 \%े					3176.31	$\underline{100.00}$	$\underline{221.62}$
4210					2806.46	88.36	195.81
3897.50					3138.22	98.90	218.96

$$
*=2100.9 / 1981.57 \quad * * 209.03 * 1.1204
$$

7.3.3 (1) Over the year (OY): fundamental formulas

	link	volume index	
quar- terly	$\begin{aligned} & (15)^{*} \\ & L_{y-1, q \rightarrow y, q}^{O Y}=\frac{\overline{\mathrm{V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}}}{\overline{\mathrm{~V}}_{\mathrm{y}-1, \mathrm{y}-1, \mathrm{q}}} \end{aligned}$	(16)$\mathrm{I}_{\mathrm{y}, \mathrm{q}}^{\mathrm{OY}}=\mathrm{I}_{\mathrm{y}-1, \mathrm{q}}^{\mathrm{OY}} \mathrm{~L}_{\mathrm{y}-1, \mathrm{q} \rightarrow \mathrm{y}, \mathrm{q}}^{\mathrm{OY}}$	
annu ally	(17) $L_{(y-1) \rightarrow y}^{O Y}=\frac{\sum_{q} \bar{V}_{y, y-1, q}}{\sum_{q} \overline{\mathrm{~V}}_{y-1, y-1, \mathrm{q}}}$	(18)$\mathrm{I}_{\mathrm{y}}^{\mathrm{OY}}=\mathrm{I}_{\mathrm{y}-1}^{\mathrm{OY}} \mathrm{~L}_{(\mathrm{y}-1) \rightarrow \mathrm{y}}^{\mathrm{OY}} \neq \frac{1}{4} \sum_{\mathrm{q}} \mathrm{I}_{\mathrm{y}, \mathrm{q}}^{\mathrm{OY}}$	
$L_{(y-1) \rightarrow y}^{\mathrm{OY}}=\frac{\sum_{q} \mathrm{I}_{\mathrm{y}-1, \mathrm{q}}^{\mathrm{OY}} \mathrm{~L}_{(\mathrm{y}-1), \mathrm{q} \rightarrow \mathrm{y}, \mathrm{q}}^{\mathrm{OY}}}{\sum_{\mathrm{q}} \mathrm{I}_{\mathrm{yy}-1, \mathrm{q}}^{\mathrm{OY}}} \neq \frac{\sum_{q} \mathrm{~L}_{(\mathrm{y}-1), \mathrm{q} \rightarrow \mathrm{y}, \mathrm{q}}^{\mathrm{OY}}}{4}$			aggregation of QNA and direct ANA are not compatible (no time consistency)

OY virtually constructs not one but rather four chains, one for each quarter and the successive quarters are not linked together

* compare (15) to (11)!

7.3.3 (2) Over the year quarterly index in one formula

To verify assume again $\mathrm{y}=4$ and $\mathrm{q}=2$

$$
\mathrm{I}_{4,2}^{\mathrm{OY}}=\frac{\sum \mathrm{p}_{0} \mathrm{q}_{1 ; 2}}{\mathrm{~W}_{0} / 4} \frac{\sum \overline{\mathrm{p}}_{1} \mathrm{q}_{2 ; 2}}{\sum \overline{\mathrm{p}}_{1} \mathrm{q}_{1 ; 2}} \frac{\sum \overline{\mathrm{p}}_{2} \mathrm{q}_{3 ; 2}}{\sum \overline{\mathrm{p}}_{2} \mathrm{q}_{2 ; 2}} \frac{\sum \overline{\mathrm{p}}_{3} \mathrm{q}_{4 ; 2}}{\sum \overline{\mathrm{p}}_{3} \mathrm{q}_{3 ; 2}}
$$

see the following slides for the figures of the numerical example

$$
\mathrm{I}_{4,2}^{\mathrm{OY}}=\frac{654.30}{473.754} \frac{1018.74}{730.42} \frac{2220.22}{1695.93} \frac{3546.16}{3361.26}=2.6605
$$

the terms $\quad \sum \overline{\mathrm{p}_{1}} \mathrm{q}_{1 ; 2} \sum \overline{\mathrm{p}}_{2} \mathrm{q}_{2 ; 2} \sum \overline{\mathrm{p}}_{3} \mathrm{q}_{3 ; 2}$ have to be calculated especially for OY

7.3.3 (3) Over the year (OY) 2005-2007

7.3.3 (4) Over the year (OY) 2007-2009

value	vol. (06)	link (07)	vol. (07)	link (08)	vol. (08)	link (09)	index
1440 ~	1081.89	162.14	1815.26	\emptyset pric	2007		204.17
1755 II	1018.74	139.47	1695.93	$\mathrm{p}_{\mathrm{A}}=$	$7, \mathrm{p}_{\mathrm{B}}=95.83$. 95.83	192.63
2300 ते	1046.21	119.62	1862.24				196.78
1860	1109.37	118.30	1981.57				209.03
1838.75	1064.05		1838.75		90/1815.26		200.65 a)
2840			2100.90	115.74 b)	unweighted mean over the quarterly indices		236.29 c)
3590 ~			2220.22	130.91			252.18 d)
3370 ®			2339.55	125.63			247.22
3460 ले			2100.90	106.02			221.62
3315			2190.39	119.58			239.33
3610 -					3023.96	95.20	224.96
3830 "					3546.16	105.50	$\underline{266.05}{ }^{\text {² }}$
3940 हे					3176.31	89.57	221.43
4210					2806.46	88.36	195.81
3897.50					3138.22	94.66	227.06

a) Unweighted mean over $204.17+\ldots+209.03$ (increase 32.6%)
c) $204.17 * 1.1574$
not $(1838.75 / 802.50) * 100=229.13$ (instead of 200.65)
d) $192.63 * 1.3091$
7.4 Results of the numerical example: 1. quarterly indices and 2. annual indices according to the three methods and the traditional constant prices volume index (direct Laspeyres quantity index). We will look at tables, graphs, correlations
3. It is also considered what would happen if indices were quarterly chained (re-weighted) rather than annually (that is if the quarterly volumes would be multiplied [chained or "chain-linked"]
4. results of the numerical example of the IMF manual are also presented
7.5 More formulas: chained indices, and indices derived from them; formulas for the comparisons D1, D2, and D3 and for the computation of contribution to growth (decomposition of growth rates)
7.6 Final discussion of advantages and disadvantages of the three methods as opposed to the traditional constant prices volume index
7.4.1 (1) Volumes based on constant prices, Synopsis of methods: quarterly indices

y	volumes*	index*	volumes**	index**	AO	QO	OY
N	596.54	125.92		125.92	125.92	125.92	125.92
	654.29	138.11		138.11	138.11	138.11	138.11
	779.32	164.50		164.50	164.50	164.50	164.50
	837.07	176.69		176.69	176.69	176.69	176.69
O	962.09	203.08	1081.89	228.37	203.98	203.85	204.17
	904.34	190.89	1018.74	215.04	192.07	191.95	192.63
	943.05	199.06	1046.21	220.84	197.25	197.13	196.78
	1000.79	211.25	1109.37	234.17	209.16	209.03	209.03
8	1058.55	223.44	2100.90	443.46	229.22	221.62	236.29
	1116.30	235.63	2220.22	468.65	242.24	234.20	252.18
	1174.05	247.25	2339.55	494.84	255.26	246.79	247.22
	1058.55	223.44	2100.90	443.46	229.22	221.62	221.62
\%	1077.50	227.46	3023.96	638.30	218.00	210.99	224.96
	1174.05	247.82	3546.16	748.53	255.65	247.42	266.05
	1058.55	223.44	3176.31	670.46	228.99	221.62	221.43
	943.05	199.06	2806.46	592.39	202.32	195.81	195.81

* at constant average prices of 2005
** at average prices of the preceding year (much higher then at prices of 2005; see also slides 13/14)

7.4.1 (2) Graph of the quarterly indices

7.4.1 (3) Results of the three methods (quarterly indices 2007 - 2009)

correlations (between indices)

	AO	QO	OY
QO	0,99325	1	
OY	0,95946	0,95795	1
CD	0,97731	0,97061	0,95930

other descriptive statistics

	AO	QO	OY	CP	This confirms: CP
SD	55,16	52,28	55,89	18,91	is the least volatile
AM	183,43	180,36	183,67	219,36	
CV	0,3007	0,2898	0,3043	0,0862	
AD	46,22	43,77	46,41	15,54	

SD = standard deviation; $A M=$ arithmetic mean,
$C V=$ coefficient of variation; $A M=$ mean absolute deviation
7.4.1 (4) The three methods (quarterly indices 2007-2009; growth rates)
quarter to quarter growth rates

correlations (growth rates)
in the levels

	AO	QO	OY	CP
AO	1,0000			
QO	0,9938	1,0000		
OY	0,9347	0,9181	1,0000	
CP	0,9330	0,9352	0,9128	1,00

	AO	QO	OY
QO	0,99325	1	
OY	0,95946	0,95795	1
CD	0,97731	0,97061	0,95930

7.4.1 (5) Time series of values, the value index and the quarterly volume indices

q, y	value	value-index			
Q1 2005	300	63,32	1.000,00		
Q2 2005	505	106,60	900,00		
Q3 2005	540	113,98	900,00		
Q4 2005	550	116,09	800,00	,	
Q12006	600	126,65	700,00	N	
Q.2 2006	710	149,87			
Q3 2006	890	187,86			
Q4 2006	1010	213,19	500,00		
Q12007	1440	303,96		N	-A0
Q2 2007	1755	370,45	400,00	-	windex
Q3 2007	2300	485,49	300,00	-	de-index
Q4 2007	1860	392,61	200,00	\sim	
Q12008	2840	599,47			
Q22008	3590	757,78	100,00	\square	
Q3 2008	3370	711,36			
Q4 2008	3460	730,34			
Q12009	3610	762,01		Q1 Q3 Q1 Q3 Q1 Q3 Q1 Q3 Q1 Q3	
Q2 2009	3830	808,44		2005200520062006200720072008200820092009	
Q3 2009	3940	831,66			
	${ }_{\text {e, }}^{4210}$	8urse, 888,65	(Chain 3)		4

7.4.1 (6) Time series of the value index and the quarterly volume indices

val-index $=$ value index $($ from 63.32 to 888.65$)$
val/vol = value divided by volumes at average prices of the previous year
implPI = implicit price indes (= value index divided by AO volume index)

7.4.2 (1) Annual indices: Synopsis of methods and volumes at constant prices

y	volumes*	index*	volumes**	index**	AO	QO	OY
06	716.81	151.30	716.81	151.30	151.30	151.30	151.30
07	952.56	201.07	1064.05	224.60	201.07	200.49	200.65
08	1101.86	232.58	2190.30	462.35	232.58	231.06	239.33
09	1063.31	224.44	3138.22	662.42	224.44	218.96	227.06

[^3]
7.4.2 (2) Graph of annual indices

The differences between the three methods and constant prices at 2005 are much smaller than expected

7.4.3 (1) Quarterly chained quantity indices (or volume indices)

chained price
indices defined
analogously
quantity indices of
Laspeyres (see
formula above) $\mathrm{Q}^{\mathrm{LQC}}$
or Paasche index $\mathrm{Q}^{\mathrm{PQC}}$
are in between the
value index and the
AO index (and there-
fore also the QO and
OY index)
here and in the following slides I made a mistake with the symbols: PP and PL should read QP and QL

7.4.3 (2) Quarterly chained quantity (volume) indices QLQC, QPQC

q,y	AO	Paasche quarterly	Laspeyres quarterly	
Q1 05	77,16	100,00	100,00	$600,00 \square$
Q2 05	89,35	144,29	143,33	
Q3 05	115,74	120,80	117,79	500,00
Q4 05	117,75	119,71	114,52	-
Q1 06	125,92	130,59	123,89	
Q2 06	138,11	141,56	134,21	
Q3 06	164,50	147,35	140,83	$30000 \square=A 0$
Q4 06	176,69	155,84	148,74	
Q1 07	203,98	193,45	185,55	- _PP-quarterly
Q2 07	192,07	251,49	242,25	200,00 \longrightarrow _pl-quarterly
Q3 07	197,25	298,16	282,97	
Q4 07	209,16	226,36	215,30	$100,00$
Q1 08	229,22	326,32	309,64	1
Q2 08	242,24	389,85	369,61	
Q3 08	255,26	346,65	328,94	QP, QL
Q4 08	229,22	397,15	376,77	
Q1 09	218,00	431,84	397,46	
Q2 09	255,65	407,38	371,04	
Q3 09	228,99	466,59	425,29	$\mathrm{Q}^{\mathrm{PQC}}>\mathrm{Q}^{\mathrm{LQC}}$ in this numerical example
Q4 09	202,32	562,85	513,80	

7.4.3 (3) Quarterly chained indices rebased $\varnothing 2005=100$ instead of Q1 $05=100$

	PLQ(05)	PPQ(05)
Q1 05	$\mathbf{8 4 , 1 0}$	$\mathbf{8 2 , 5 1}$
Q2 05	$\mathbf{1 2 0 , 5 4}$	$\mathbf{1 1 9 , 0 5}$
Q3 05	$\mathbf{9 9 , 0 6}$	$\mathbf{9 9 , 6 7}$
Q4 05	$\mathbf{9 6 , 3 1}$	$\mathbf{9 8 , 7 7}$
Q1 06	$\mathbf{1 0 4 , 1 9}$	$\mathbf{1 0 7 , 7 5}$
Q2 06	$\mathbf{1 1 2 , 8 7}$	$\mathbf{1 1 6 , 8 0}$
Q3 06	$\mathbf{1 1 8 , 4 3}$	$\mathbf{1 2 1 , 5 8}$
Q4 06	$\mathbf{1 2 5 , 0 8}$	$\mathbf{1 2 8 , 5 8}$
Q1 07	$\mathbf{1 5 6 , 0 5}$	$\mathbf{1 5 9 , 6 2}$
Q2 07	$\mathbf{2 0 3 , 7 3}$	$\mathbf{2 0 7 , 5 0}$
Q3 07	237,97	$\mathbf{2 4 6 , 0 1}$
Q4 07	$\mathbf{1 8 1 , 0 7}$	$\mathbf{1 8 6 , 7 7}$
Q1 08	$\mathbf{2 6 0 , 4 0}$	$\mathbf{2 6 9 , 2 5}$
Q2 08	$\mathbf{3 1 0 , 8 3}$	$\mathbf{3 2 1 , 6 6}$
Q3 08	$\mathbf{2 7 6 , 6 3}$	$\mathbf{2 8 6 , 0 2}$
Q4 08	$\mathbf{3 1 6 , 8 6}$	$\mathbf{3 2 7 , 6 9}$
Q1 09	$\mathbf{3 3 4 , 2 6}$	$\mathbf{3 5 6 , 3 1}$
Q2 09	$\mathbf{3 1 2 , 0 3}$	$\mathbf{3 3 6 , 1 3}$
Q3 09	$\mathbf{3 5 7 , 6 6}$	$\mathbf{3 8 4 , 9 8}$
Q4 09	$\mathbf{4 3 2 , 0 9}$	$\mathbf{4 6 4 , 4 1}$

average of year 2005 = $\mathbf{1 0 0}$ instead of first quarter of $2005=100$
Again quarterly chained indices $\left(\mathrm{Q}^{\mathrm{PQC}}>\mathrm{Q}^{\mathrm{LQC}}\right)$ are rising much
higher than annually chained indices (of AO type)

7.4.4 (1) Numerical example in the IMF manual (1)

quantities

prices

7.4.4 (2) Numerical example in the IMF manual (2)

quarterly indices

(only two years 1999 and 2000 are different

correlations		AO	QO
	QO	0,98345	1,00000
	OY	0,90783	0,82966

[^4]
7.4.4 (3) Numerical example in the IMF manual (3)

The three methods AO, QO and OY: growth rates

our example (slide 38) \Rightarrow again OY an exception

rAO		rQO	rOY
$99-2$	0,7831	0,7940	1,4120
$99-3$	0,7863	0,7878	1,4388
$99-4$	0,8995	0,8907	1,5831
$00-1$	$-0,3002 *$	$0,5315^{*}$	$-3,0087$
$00-2$	0,5292	0,5287	1,6904
$00-3$	0,3630	0,3655	1,5618
$00-4$	1,0038	1,0036	2,2752
* difference is indicating a "drift"			

7.4.4 (4) Numerical example in the IMF manual (4)

volumes (absolute figures) at constant prices of 97,98 , and 2000

the issue of re-writing of history with CP deflation
underlying prices
(unit values)

	p_{a}	p_{b}
97	7.0	6.0
98	5.5	9.0
99	4.0	11.5
00	3,0	13,5

The problem with the CP-approach:
figures depend on which year is taken as basis for the constant prices volumes

7.4.4 (5) IMF manual example: Quarterly chained and direct quantity (volume) indices

	QL(ch)	QP(ch)	QL(dir)	QP(-dir)
$98-1$	100	100	100	100
$98-2$	100,94	100,81	100,94	100,81
$98-3$	101,72	101,42	101,86	101,27
$98-4$	102,28	101,86	102,76	101,48
$99-1$	103,11	102,52	104,00	101,65
$99-2$	103,54	102,84	105,06	101,54
$99-3$	103,87	103,03	106,12	101,12
$99-4$	104,14	103,19	107,31	100,70
$00-1$	104,53	103,54	108,63	100,69
$00-2$	104,85	103,74	110,06	100,08
$00-3$	104,88	103,63	111,32	98,94
$00-4$	105,55	104,23	113,12	98,85

The result comes up to our expectations

7.4.5 (1) Simulations of Eurostat (graphs taken from Kuhnert*)

1. Strong substitution effect * reproduced here with the permission of

Dr. Ingo Kuhnert
Quarterly volume indexseries (all Laspeyres): a fixed-base index (with annual base), a moving base one with quarterly re-weighting, and three annually re-weighted chain-linked series using different linking techniques. Source data contains a strong substitution effect.

7.4.5 (2) Simulations of Eurostat (graphs taken from Kuhnert)

2. Cycle and no trend

Quarterly volume index series (all Laspeyres): a fixed-base index (with annual base), a moving base one with quarterly re-weighting, and three annually re-weighted chain-linked series using different linking techniques. Source data contains a constant seasonal cycle and no trend.

7.4.5 (3) Simulations of Eurostat (graphs taken from Kuhnert)

3. Trend, weak substitution effect

Quarterly volume index series (all Laspeyres): a fixed-base index (with annual base), a moving base one with quarterly re-weighting, and three annually re-weighted chain-linked series using different linking techniques. Source data contains a trend and weak substitution effect.

7.5 Overview

This section contains another look at the formulas to

1. see which comparisons can consistently be made (interpretation of a sequence of indices, consistency between QNA and ANA)
2. if percentage changes of the indices can reasonably be decomposed into growth rates of "components" and if these growth rates are comparable over time

Its purpose is to prepare a final assessment of the three techniques (see sec. 7.6)
7.5.1 (1) Time series and comparisons: AO method

(19) sequence of annual indices

(20) sequence of quarterly indices
(21) comparison D1 $(\mathrm{y}, \mathrm{q}) \rightarrow(\mathrm{y}, \mathrm{q}-1)$
(22) comparison D2
$(\mathrm{y}, \mathrm{q}) \rightarrow(\mathrm{y}-1, \mathrm{q})$
(23) comparison D3 $(\mathrm{y}, \mathrm{q}=4) \rightarrow(\mathrm{y}+1, \mathrm{q}=1)$

$$
\frac{\mathrm{I}_{\mathrm{y}, \mathrm{q}}^{\mathrm{AO}}}{\mathrm{I}_{\mathrm{y}, \mathrm{q}-1}^{\mathrm{O}}}=\frac{\overline{\mathrm{V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}}}{\overline{\mathrm{~V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}-1}}=\frac{\sum_{i} \overline{\mathrm{p}}_{\mathrm{i}, \mathrm{y}-1} \mathrm{q}_{\mathrm{i}, \mathrm{y}, \mathrm{q}}}{\sum_{\mathrm{i}} \overline{\mathrm{p}}_{\mathrm{i}, \mathrm{y}-1} \mathrm{q}_{\mathrm{i}, \mathrm{y}, \mathrm{q}-1}}
$$

pure comparison!!

$$
\frac{I_{\mathrm{y}, \mathrm{q}}^{\mathrm{AO}}}{\mathrm{I}_{\mathrm{y}-1, \mathrm{q}}^{\mathrm{AO}}}=\frac{\overline{\mathrm{V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}}}{\overline{\mathrm{~V}}_{\mathrm{y}-1, \mathrm{y}-2, \mathrm{q}}} \cdot \frac{\sum_{\mathrm{q}} \overline{\mathrm{~V}}_{\mathrm{y}-1, \mathrm{y}-2, \mathrm{q}}}{\mathrm{~W}_{\mathrm{y}-1}}=\mathrm{Q}_{\mathrm{y}-1, \mathrm{q}}^{\mathrm{y}, \mathrm{q}} \cdot \mathrm{~A}_{\mathrm{y}-1, \mathrm{y}-1}^{\mathrm{y}-1, \mathrm{l}-2}
$$

$$
\frac{\mathrm{I}_{\mathrm{y}+1, \mathrm{q}=1}^{\mathrm{AO}}}{\mathrm{I}_{\mathrm{y}, \mathrm{q}=4}^{\mathrm{AO}}}=\frac{\overline{\mathrm{V}}_{\mathrm{y}+1, \mathrm{y}, \mathrm{q}=1}}{\overline{\mathrm{~V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}=4}} \cdot \frac{\sum_{\mathrm{q}} \overline{\mathrm{~V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}}}{\mathrm{~W}_{\mathrm{y}}}=\mathrm{Q}_{\mathrm{y}, 4}^{\mathrm{y}+1,1} \mathrm{~A}_{\mathrm{y}, \mathrm{y}}^{\mathrm{y}, \mathrm{y}-1}
$$

Eq. 21 shows: pure comparison of successive quarters of the same year; they only differ from one another with respect to quantities
7.5.1 (2) Alternative presentation of eqs. (19), (20) AO method

y	$\mathrm{q}=1$	\ldots	$\mathrm{q}=4$	annual $\mathbf{A O}$ index (y)

0	$\mathrm{I}_{0,1}^{\mathrm{AO}}=\frac{\overline{\mathrm{V}}_{0,0, \mathrm{q}=1}}{\frac{1}{4} \mathrm{~W}_{0}}$	$I_{0,4}^{\mathrm{AO}}=\frac{\overline{\mathrm{V}}_{0,0, \mathrm{q}=4}}{\frac{1}{4} \mathrm{~W}_{0}}$	$\frac{\sum_{\mathrm{q}} \overline{\mathrm{~V}}_{0,0, \mathrm{q}}}{\mathrm{~W}_{0}}=\frac{1}{4} \sum_{\mathrm{q}} \mathrm{I}_{0, \mathrm{q}}^{\mathrm{AO}}=\mathrm{I}_{0}^{\mathrm{AO}}=1$
1	$\mathrm{I}_{1,1}^{\mathrm{AO}}=\frac{\overline{\mathrm{V}}_{1,0, \mathrm{q}=1}}{\frac{1}{4} \mathrm{~W}_{0}}$	$I_{1,4}^{\mathrm{AO}}=\frac{\overline{\mathrm{V}}_{1,0, \mathrm{q}=4}}{\frac{1}{4} \mathrm{~W}_{0}}$	$\mathrm{I}_{1}^{\mathrm{AO}}=\frac{\sum_{\mathrm{q}} \overline{\mathrm{~V}}_{1,0, \mathrm{q}}}{\mathrm{~W}_{0}}$
2	$\mathrm{I}_{2,1}^{\mathrm{AO}}=\mathrm{I}_{1}^{\mathrm{AO}} \frac{\overline{\mathrm{V}}_{2,1, \mathrm{q}=1}}{\frac{1}{4} \mathrm{~W}_{1}}$	$\mathrm{I}_{2,1}^{\mathrm{AO}}=\mathrm{I}_{1}^{\mathrm{AO}} \frac{\overline{\mathrm{~V}}_{2,1, \mathrm{q}=4}}{\frac{1}{4} \mathrm{~W}_{1}}$	$\mathrm{I}_{2}^{\mathrm{AO}}=\frac{\sum_{\mathrm{q}} \overline{\mathrm{~V}}_{1,0, \mathrm{q}}}{\mathrm{~W}_{0}} \frac{\sum_{\mathrm{q}} \overline{\mathrm{~V}}_{2,1, \mathrm{q}}}{\mathrm{~W}_{1}}$
3	$\mathrm{I}_{3,1}^{\mathrm{AO}}=\mathrm{I}_{2}^{\mathrm{AO}} \frac{\overline{\mathrm{V}}_{3,2 \mathrm{q}=1}}{\frac{1}{4} \mathrm{~W}_{2}}$	$\mathrm{I}_{3,4}^{\mathrm{AO}}=\mathrm{I}_{2}^{\mathrm{AO}} \frac{\overline{\mathrm{V}}_{3,2 \mathrm{q}=4}}{\frac{1}{4} \mathrm{~W}_{2}}$	$\mathrm{I}_{3}^{\mathrm{AO}}=\frac{\sum_{\mathrm{q}} \overline{\mathrm{~V}}_{1,0, \mathrm{q}}}{\mathrm{~W}_{0}} \frac{\sum_{\mathrm{q}} \overline{\mathrm{~V}}_{2,1, \mathrm{q}}}{\mathrm{~W}_{1}} \frac{\sum_{\mathrm{q}} \overline{\mathrm{~V}}_{3,2, \mathrm{q}}}{\mathrm{~W}_{2}}$
annual indices are forming a chain (product of links) $\mathrm{I}_{\mathrm{y}}^{\mathrm{AO}}=\frac{\sum_{\mathrm{q}} \overline{\mathrm{V}}_{1,0, \mathrm{q}}}{\mathrm{W}_{0}} \frac{\sum_{\mathrm{q}} \overline{\mathrm{V}}_{2,1, \mathrm{q}}}{\mathrm{W}_{1}} \frac{\sum_{\mathrm{q}}}{\overline{\mathrm{V}}_{3,2, \mathrm{q}}} \mathrm{W}_{2} \ldots \frac{\sum_{\mathrm{q}} \overline{\mathrm{V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}}}{\mathrm{W}_{\mathrm{y}-1}}{ }^{2}$	annual indices are forming a chain (product of links)		$\mathrm{I}_{\mathrm{y}}^{\mathrm{AO}}=\frac{\sum_{\mathrm{q}} \overline{\mathrm{~V}}_{1,0, \mathrm{q}}}{\mathrm{~W}_{0}} \frac{\sum_{\mathrm{q}} \overline{\mathrm{~V}}_{2,1, \mathrm{q}}}{\mathrm{~W}_{1}} \frac{\sum_{\mathrm{q}} \overline{\mathrm{~V}}_{3,2, \mathrm{q}}}{\mathrm{~W}_{2}} \ldots \frac{\sum_{\mathrm{q}} \overline{\mathrm{~V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}}}{\mathrm{~W}_{\mathrm{y}-1}}$

7.5.1 (3) Interpretations of eqs. 22 and 23 (AO comparisons between different years)
$22^{*} \frac{I_{y, q}^{A O}}{I_{y-1, q}^{A O}}=\frac{\bar{V}_{y \cdot y-1, q}}{\bar{V}_{y-1, y-2, q}} / \frac{W_{y-1}}{\sum_{q} \bar{V}_{y-1, y-2, q}}=Q_{y-1, q}^{y, q} \div A_{y-1, y-2}^{y-1, y-1} \begin{aligned} & A=\text { annual index } \\ & Q=\text { quarterly index }\end{aligned}$
Q is a quarter specific ratio (reflecting volume change, however at different prices).
Numerator and denominator differ with respect to both, (average) prices and quantities.
Hence in 22 the comparison is biased (the same is true for 23)
$\mathbf{A}^{\mathbf{- 1}}$ is a Paasche price index relating prices in $y-1$ to those in $y-2$, and A may be viewed as (partially) correcting the bias.

In A numerator and denominator differ with respect to prices only.
$23^{*} \quad \frac{\mathrm{I}_{\mathrm{y}+1, \mathrm{q}=1}^{\mathrm{AO}}}{\mathrm{I}_{\mathrm{y}, \mathrm{q}=4}^{\mathrm{AO}}}=\frac{\overline{\mathrm{V}}_{\mathrm{y}+1, \mathrm{y}, \mathrm{q}=1}}{\overline{\mathrm{~V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}=4}} \cdot \frac{\sum_{\mathrm{q}} \overline{\mathrm{V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}}}{\mathrm{W}_{\mathrm{y}}}=\mathrm{Q}_{\mathrm{y}, 4}^{\mathrm{y}+1,1} \div \mathrm{A}_{\mathrm{y}, \mathrm{y}-1}^{\mathrm{y}, \mathrm{y}} \begin{aligned} & \text { again } \mathrm{Q} \text { does not } \\ & \text { provide a pure } \\ & \text { comparison of } \\ & \text { volumes }\end{aligned}$

$$
\mathrm{A}_{\mathrm{y}, \mathrm{y}-1}^{\mathrm{y}, \mathrm{y}}=\frac{\sum_{\mathrm{q}} \overline{\mathrm{~V}}_{\mathrm{y}, \mathrm{y}, \mathrm{q}}}{\sum_{\mathrm{q}} \overline{\mathrm{~V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}}} \quad \begin{aligned}
& \text { and dividing by the Paasche price index A (comparing } \\
& \text { average prices of } \mathrm{y} \text { and } \mathrm{y}-1 \text { on the basis of quantities of } \mathrm{y} \text {) } \\
& \text { amounts to making a correction for the different prices in } \mathrm{Q}
\end{aligned}
$$

* counterparts in the QO case (22) \rightarrow (27), and (23) $\rightarrow \mathbf{(2 8)}$

7.5.1 (4) Interpretations of eqs. 22 and 23 (AO comparisons between different years)

However, a pure quantity comparison between $\mathrm{y}+1, \mathrm{q}=1$ and $\mathrm{y}, \mathrm{q}=4$ would be
23a $\quad D=\frac{\bar{V}_{y+1, y, q=1}}{\bar{V}_{y, y, q=4}} \neq Q_{y, 4}^{y+1}=\frac{\bar{V}_{y+1, y, q=1}}{\bar{V}_{y, y-1, q=4}} \quad$ for $Q_{y, 4}^{y+1} \quad$ see eq. 23

$$
\text { or } \quad D=\sum_{i} \overline{\mathrm{p}}_{\mathrm{iy}} \mathrm{q}_{\mathrm{i}, \mathrm{y}+1, \mathrm{q}=1} / \sum_{\mathrm{i}} \overline{\mathrm{p}}_{\mathrm{iy}} \mathrm{q}_{\mathrm{i}, \mathrm{y}, \mathrm{q}=4}
$$

the "contamination"* of the comparison now may be viewed as a relation between two Paasche price indices

23b

$$
\begin{aligned}
\text { cont } \\
\text { correct }
\end{aligned} \xrightarrow{\mathrm{I}_{\mathrm{y}+1, \mathrm{q}=1}^{\mathrm{AO}} / /_{\mathrm{y}, \mathrm{q}=4}^{\mathrm{AO}}}=\frac{\overline{\mathrm{V}}_{\mathrm{y}, \mathrm{y}, \mathrm{q}=4} / \overline{\mathrm{V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}=4}}{\sum_{\mathrm{q}} \overline{\mathrm{~V}}_{\mathrm{y}, \mathrm{y}} / \sum_{\mathrm{q}} \overline{\mathrm{~V}}_{\mathrm{y}, \mathrm{y}-1}}
$$

$$
\text { cont }=\frac{I_{y+1, q=1}^{\mathrm{AO}} / \mathrm{I}_{\mathrm{y}, \mathrm{q}=4}^{\mathrm{AO}}}{\mathrm{D}}=\frac{\sum_{\mathrm{i}} \overline{\mathrm{i}}_{\mathrm{i},} \mathrm{q}_{\mathrm{i}, \mathrm{y}, \mathrm{q}=4} / \sum_{\mathrm{i}} \overline{\mathrm{p}}_{\mathrm{i}, \mathrm{y}-1} \mathrm{q}_{\mathrm{i}, \mathrm{y}, \mathrm{q}=4}}{\sum_{\mathrm{q}} \sum_{\mathrm{i}} \overline{\mathrm{p}}_{\mathrm{iy}} \mathrm{q}_{\mathrm{i}, \mathrm{y}, \mathrm{q}} / \sum_{\mathrm{q}} \sum_{\mathrm{i}} \overline{\mathrm{p}}_{\mathrm{i}, \mathrm{y}-1} \mathrm{q}_{\mathrm{i}, \mathrm{y}, \mathrm{q}}}
$$

* Robert Kirchner, Deutsche Bundesbank, June 2006
no bias $($ cont $=1)$ if the price movement $\mathrm{y}-1 \rightarrow \mathrm{y}$ in $\mathrm{q}=4$ equals the (average) annual price change in other words: if $q=4$ is representative of the whole year
7.5.1x (1) Digression: Contribution of aggregates to percentage change of the volume

AO Method $\mathrm{y}, \mathrm{q} \rightarrow \mathrm{y}, \mathrm{q}+1$ "no problem" (Tödter*) because of the same average prices (however, the weights are changing, due to different quantities in the successive quarters)
$\begin{array}{r}\text { General } \\ \text { formula }\end{array} \mathrm{g}_{\mathrm{y}, \mathrm{q}+1}^{\mathrm{AO}}=\frac{\mathrm{I}_{\mathrm{y}, \mathrm{q}+1}^{\mathrm{AO}}-\mathrm{I}_{\mathrm{y}, \mathrm{q}}^{\mathrm{AO}}}{\mathrm{I}_{\mathrm{y}, \mathrm{q}}^{\mathrm{AO}}}=\frac{\overline{\mathrm{V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}+1}-\overline{\mathrm{V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}}}{\overline{\mathrm{V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}}}=\frac{\sum_{\mathrm{i}} \overline{\mathrm{p}}_{\mathrm{i}, \mathrm{y}} \mathrm{q}_{\mathrm{i}, \mathrm{y}, \mathrm{q}+1}-\sum_{\mathrm{i}} \overline{\mathrm{p}}_{\mathrm{i}, \mathrm{y}} \mathrm{q}_{\mathrm{i}, \mathrm{y}, \mathrm{q}}}{\sum_{\mathrm{i}} \overline{\mathrm{p}}_{\mathrm{i}, \mathrm{y}} \mathrm{q}_{\mathrm{i}, \mathrm{y}, \mathrm{q}}}$

$$
g_{y, q+1}^{A O}=\frac{\bar{p}_{A, y-1} q_{A, y, q}}{\sum \bar{p}_{i, y-1} q_{i, y, q}}\left(\frac{q_{A, y, q+1}-q_{A, y, q}}{q_{A, y, q}}\right)+\frac{\bar{p}_{B, y-1} q_{B, y, q}}{\sum \bar{p}_{i, y-1} q_{i, y, q}}\left(\frac{q_{B, y, q+1}-q_{B, y, q}}{q_{B, y, q}}\right)
$$

$$
\begin{aligned}
& =\underset{\uparrow}{\mathrm{W}_{\mathrm{Ayq}}}\left(\frac{\mathrm{q}_{\mathrm{A}, \mathrm{y}, \mathrm{q}+1}-\mathrm{q}_{\mathrm{A}, \mathrm{y}, \mathrm{q}}}{\mathrm{q}_{\mathrm{A}, \mathrm{y}, \mathrm{q}}}\right)+\mathrm{w}_{\mathrm{Byq}}\left(\frac{\mathrm{q}_{\mathrm{B}, \mathrm{y}, \mathrm{q}+1}-\mathrm{q}_{\mathrm{B}, \mathrm{y}, \mathrm{q}}}{\mathrm{q}_{\mathrm{B}, \mathrm{y}, \mathrm{q}}}\right) \begin{array}{l}
\text { weights are not } \\
\text { weights variable (denending on vand } \mathrm{q} \text {) } \\
\text { is not "no problem" }
\end{array}
\end{aligned}
$$

weights variable (depending on y and q)
$\mathrm{w}_{\mathrm{Ayq}}^{\downarrow}=\frac{\overline{\mathrm{p}}_{\mathrm{A}, \mathrm{y}-1} \mathrm{q}_{\mathrm{A}, \mathrm{y}, \mathrm{q}}}{\sum \overline{\mathrm{p}}_{\mathrm{y}-1} \mathrm{q}_{\mathrm{y}, \mathrm{q}}} \quad \mathrm{w}_{\text {Byq }}=1-\mathrm{w}_{\mathrm{Ayq}}$
*) "Die Zerlegung des Gesamtwachstums in die Wachstumsbeiträge der Komponenten innerhalb eines Jahres ist unproblematisch" (p. 18)
7.5.1x (2) Digression: Example: 2007,2 \rightarrow 2007,3 and 2007,3 \rightarrow 2007,4

7.5.1x (3) Digression: the numerical example ctd: $2009,1 \rightarrow 2009,2$

Formulas for decomposing of growth rates (into contributions of certain aggregates to growth) are even more complicated

- for other comparisons (e.g. across years)
- or other linking techniques (that is for QO or OY).

Adding or chainlinking of (partial) growth rates does not make sense.

7.5.1x (4) Digression: contribution of net-exports to growth of GDP

$$
\text { net exports* }=\mathrm{N}=\mathrm{X}-\mathrm{M}
$$

The chain index deflation of balancing items (net export, inventories etc.) where varying signs

* balancing item B. 11 (= external balance ...) may occur is not infrequently called in question
$\mathrm{Y}=\mathrm{GDP}, \mathrm{F}=$ final domestic expenditure: $\mathrm{Y}=\mathrm{F}+(\mathrm{X}-\mathrm{M})=\mathrm{F}+\mathrm{N}$ and $\Delta \mathrm{Y}=\mathrm{Y}_{\mathrm{t}}-\mathrm{Y}_{\mathrm{t}-1}$
This can be transformed to (see e.g. Kirchner) growth rate of F
$\frac{\Delta Y_{t}}{Y_{t-1}}=\frac{\Delta N_{t}}{Y_{t-1}}+\frac{\Delta F_{t} / F_{t-1}}{1+\mathrm{N}_{\mathrm{t}-1} / \mathrm{F}_{\mathrm{t}-1}} \quad \begin{aligned} & \text { this part of denominator would } \\ & \text { vanish if } \mathrm{N}_{\mathrm{t}-1}=\mathrm{X}_{\mathrm{t}-1}-\mathrm{M}_{\mathrm{t}-1}=0\end{aligned}$

7.5.2 (1) Time series and comparisons: QO method

(24) year to year sequence of $q=4$ indices	
(25) sequence of quarterly indices	
$\begin{aligned} & (26) \text { comparison D1 } \\ & (\mathbf{y}, \mathrm{q}) \rightarrow(\mathrm{y}, \mathrm{q}-1) \end{aligned}$	
$\begin{aligned} & (27) \text { comparison D2 } \\ & (y, q) \rightarrow(y-1, q) \end{aligned}$	$\frac{I_{y, q}^{\mathrm{QO}}}{\mathrm{I}_{\mathrm{y}-1, \mathrm{q}}^{\mathrm{OO}}}=\frac{\overline{\mathrm{V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}}}{\overline{\mathrm{~V}}_{\mathrm{y}-1, \mathrm{y}-2, \mathrm{q}}} \cdot \frac{\overline{\mathrm{~V}}_{\mathrm{y}-1, \mathrm{y}-2, \mathrm{q}=4}}{\overline{\mathrm{~V}}_{\mathrm{y}-1, \mathrm{y}-1, \mathrm{q}=4}}=Q_{\mathrm{y}-1, \mathrm{q}}^{\mathrm{y}, \mathrm{q}} \div \mathrm{Q}_{\mathrm{y}-1, \mathrm{y}-2,4}^{(*) y-1,4}$
(28) comparison D3 $(y, q=4) \rightarrow(y+1, q=1)$	$\frac{I_{y+1, q=1}^{\mathrm{QO}}}{\mathrm{I}_{\mathrm{y}, \mathrm{q}=4}^{\mathrm{QO}}}=\mathrm{L}_{\mathrm{y}, \mathrm{q}=4 \rightarrow \mathrm{y}+1, \mathrm{q}=1}^{\mathrm{QO}}=\frac{\overline{\mathrm{V}}_{\mathrm{y}+1, \mathrm{y}, \mathrm{q}=1}}{\overline{\mathrm{~V}}_{\mathrm{y}, \mathrm{y}, \mathrm{q}=4}}=\mathrm{D}^{\begin{array}{c} \text { pure quantity } \\ \text { comparison, } \\ \text { prices of } \mathrm{y} \end{array}}$
It can easily be verified that due to (26) growth factors $\mathrm{I}_{\mathrm{y}, 2} / \mathrm{I}_{\mathrm{y}, 1}$ or $\mathrm{I}_{\mathrm{y}, 3} / \mathrm{I}_{\mathrm{y}, 2}$ and $\mathrm{I}_{\mathrm{y}, 4} / \mathrm{I}_{\mathrm{y}, 3}$ of both methods, the QO and AO method are in fact the same	

7.5.2 (2) Alternative presentation of eqs. (24), (25) QO method

7.5.2 (3) Time series and comparisons: QO method (interpretations)

to compare (27) for QO to (22) for AO (same quarter different years)

$22 \frac{I_{y, q}^{A O}}{I_{y-1, q}^{A O}}=Q_{y-1, q}^{y, q} \div \frac{\sum_{q} \bar{V}_{y-1, y-1, q}}{\sum_{q} \bar{V}_{y-1, y-2, q}}=Q_{y-1, q}^{y, q} \div A_{y-1, y-2}^{y-1, y-1}$

Note:
27 and 22 differ only with respect to Q^{*} (referring to $\mathrm{q}=4$) or the Paasche price indices A (referring to a year), respectively. that is $\mathrm{A} \approx \mathrm{Q}^{*}$ then also $\mathrm{OQ} \approx \mathrm{AO}$. Comparison is biased

However, the comparison D3 ($\mathrm{y}, \mathrm{q}=\mathbf{4} \rightarrow \mathrm{y}+\mathbf{1}, \mathrm{q}=1$)
28

$$
\frac{\mathrm{I}_{\mathrm{y}+1, \mathrm{q}=1}^{\mathrm{QO}}}{\mathrm{I}_{\mathrm{y}, \mathrm{q}=4}^{\mathrm{QO}}}
$$

turns out to be a pure quantity comparison

$$
A_{y-1, y-2}^{y-1, y-1} \text { is lagging one period behind } A_{y, y-1}^{y, y} \text { in (23) slide } 59
$$

7.5.2 (4) Time series and comparisons: QO method (interpretations)

to compare (28) for QO to (23) for AO (comparison D3)
$28 \quad \frac{I_{y+1, q=1}^{\mathrm{QO}}}{\mathrm{I}_{\mathrm{y}, \mathrm{q}=4}^{\mathrm{QO}}}=\frac{\overline{\mathrm{V}}_{\mathrm{y}+1, \mathrm{y}, \mathrm{q}=1}}{\overline{\mathrm{~V}}_{\mathrm{y}, \mathrm{y}, \mathrm{q}=4}} \quad \begin{aligned} & \text { this is exactly } \mathrm{D} \\ & \text { of eq. 23a }\end{aligned} \quad \mathrm{D}=\sum_{\mathrm{i}} \overline{\mathrm{p}}_{\mathrm{iy}} \mathrm{q}_{\mathrm{i}, \mathrm{y}+1, \mathrm{q}=1} / \sum_{\mathrm{i}} \overline{\mathrm{p}}_{\mathrm{iy}} \mathrm{q}_{\mathrm{i}, \mathrm{y}, \mathrm{q}=4}$.

> hence: pure quantity comparison

However with the AO technique we get
$23 \frac{I_{y+1, q=1}^{A O}}{I_{y, q=4}^{A O}}=\frac{\bar{V}_{y+1, y, q=1}}{\bar{V}_{y, y-1, q=4}} \div \frac{\sum_{q} \bar{V}_{y, y, q}}{\sum_{q} \bar{V}_{y, y-1, q}}=Q_{y, 4}^{y+1,1} \div A_{y, y-1}^{y, y}$
The first factor Q is unequal to D , and A is again a Paasche price index.
Note

$$
A_{y, y-1}^{\mathrm{y}, \mathrm{y}}=\frac{1}{A_{\mathrm{y}, \mathrm{y}}^{\mathrm{y}, \mathrm{y}-1}}
$$

7.5.3 (1) Time series and comparisons: OY method (quarter successive years)

7.5.3 (2) Alternative presentation of eqs. (29), (30) OY method

y	$\mathrm{q}=1$	\ldots	$\mathrm{q}=4$	annual OY index (y)

0^{*}	$\mathrm{I}_{0,1}^{\mathrm{OY}}=\frac{\overline{\mathrm{V}}_{0,0, \mathrm{q}=1}}{\frac{1}{4} \mathrm{~W}_{0}}$	$\mathrm{I}_{0,4}^{\mathrm{OY}}=\frac{\overline{\mathrm{V}}_{0,0, \mathrm{q}=4}}{\frac{1}{4} \mathrm{~W}_{0}}$	$\mathrm{I}_{0}^{\mathrm{OY}}=\frac{1}{4} \sum_{\mathrm{q}} \mathrm{I}_{0, \mathrm{q}}^{\mathrm{OY}}=1$
$1 *$	$\mathrm{I}_{1,1}^{\mathrm{OY}}=\mathrm{I}_{0,1}^{\mathrm{OY}} \overline{\mathrm{V}}_{1,0, \mathrm{q}=1}$		
$\overline{\mathrm{~V}}_{0,0, \mathrm{q}=1}$	$\frac{\overline{\mathrm{~V}}_{1,0, \mathrm{q}=1}}{\frac{1}{4} \mathrm{~W}_{0}}$	$\mathrm{I}_{1,4}^{\mathrm{OY}}=\frac{\overline{\mathrm{V}}_{1,0, \mathrm{q}=4}}{\frac{1}{4} \mathrm{~W}_{0}}$	$\mathrm{I}_{1}^{\mathrm{OY}}=\frac{1}{4} \sum_{\mathrm{q}} \mathrm{I}_{1, \mathrm{q}}^{\mathrm{OY}}$
2	$\mathrm{I}_{2,1}^{\mathrm{OY}=\mathrm{I}_{1,1}^{\mathrm{OY}} \frac{\overline{\mathrm{V}}_{2,1, \mathrm{q}=1}}{\overline{\mathrm{~V}}_{1,1, \mathrm{q}=1}}}$	$\mathrm{I}_{2,4}^{\mathrm{OY}=\mathrm{I}_{1,4}^{\mathrm{OY}} \frac{\overline{\mathrm{V}}_{2,1, \mathrm{q}=4}}{\overline{\mathrm{~V}}_{1,1, \mathrm{q}=4}}}$	$* *$
$\mathrm{I}_{\mathrm{y}}^{\mathrm{OY}}=\frac{1}{4} \sum_{\mathrm{q}} \mathrm{I}_{\mathrm{y}, \mathrm{q}}^{\mathrm{OY}}$			

$*$ same result as
the AO and QO
method

$$
\begin{aligned}
& \text { ** same result } \\
& \text { as QO method }
\end{aligned}
$$

The four chain indices $q=1, \ldots, 4$
(29) $I_{y, q}^{O Y}=\frac{\bar{V}_{1,0, q}}{\frac{1}{4} W_{0}} \cdot \frac{\bar{V}_{2,1, q}}{\bar{V}_{1,1, q}} \cdot \frac{\bar{V}_{3,2, q}}{\bar{V}_{2,2, q}} \cdot \ldots \cdot \frac{\bar{V}_{y, y-1, q}}{\bar{V}_{y-1, y-1, q}}$
7.5.4 (1) Chaining: which indices are chained indices and which are derived from them?

AO: annual indices

$$
\mathrm{I}_{\mathrm{y}}^{\mathrm{AO}}=\frac{\sum_{\mathrm{q}} \overline{\mathrm{~V}}_{1,0, \mathrm{q}}}{\mathrm{~W}_{0}} \frac{\sum_{\mathrm{q}} \overline{\mathrm{~V}}_{2,1, \mathrm{q}}}{\mathrm{~W}_{1}} \frac{\sum_{\mathrm{q}} \overline{\mathrm{~V}}_{3,2, \mathrm{q}}}{\mathrm{~W}_{2}} \ldots \frac{\sum_{\mathrm{q}} \overline{\mathrm{~V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}}}{\mathrm{~W}_{\mathrm{y}-1}}
$$

derived (7), (8)

$$
I_{y, q-1}^{\mathrm{AO}}=I_{y-1}^{\mathrm{AO}} \frac{\overline{\mathrm{~V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}=1}}{\frac{1}{4} \mathrm{~W}_{\mathrm{y}-1}}, \quad \mathrm{I}_{\mathrm{y}, \mathrm{q}=2}^{\mathrm{AO}}=I_{\mathrm{y}-1}^{\mathrm{AO}} \frac{\overline{\mathrm{~V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}=2}}{\frac{1}{4} \mathrm{~W}_{\mathrm{y}-1}}
$$

etc.

QO: indices for $\mathrm{q}=4$ over the years

$$
I_{y, 4}^{\mathrm{QO}}=\frac{\overline{\mathrm{V}}_{1,0, \mathrm{q}=4}}{\frac{1}{4} \mathrm{~W}_{0}} \frac{\overline{\mathrm{~V}}_{2,1, \mathrm{q}=4}}{\overline{\mathrm{~V}}_{1,1, \mathrm{q}=4}} \frac{\overline{\mathrm{~V}}_{3,2, \mathrm{q}=4}}{\overline{\mathrm{~V}}_{2,2, \mathrm{q}=4}} \cdots \frac{\overline{\mathrm{~V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}=4}}{\overline{\mathrm{~V}}_{\mathrm{y}-1, \mathrm{y}-1, \mathrm{q}=4}}
$$

derived: quarters $q=1,2,3$ (11), (12) annual indices (average of quarterly indices) (13)
OY: year to year indices for quarter $\mathrm{q}=1, \ldots, 4$

$$
I_{\mathrm{y}, \mathrm{q}}^{\mathrm{QO}}=\frac{\overline{\mathrm{V}}_{1,0, \mathrm{q}}}{\frac{1}{4} \mathrm{~W}_{0}} \frac{\overline{\mathrm{~V}}_{2,1, \mathrm{q}}}{\overline{\mathrm{~V}}_{1,1, \mathrm{q}}} \frac{\overline{\mathrm{~V}}_{3,2, \mathrm{q}}}{\overline{\mathrm{~V}}_{2,2, \mathrm{q}}} \ldots \frac{\overline{\mathrm{~V}}_{\mathrm{y}, \mathrm{y}-1, \mathrm{q}}}{\overline{\mathrm{~V}}_{\mathrm{y}-1, \mathrm{y}-1, \mathrm{q}}} \quad \mathrm{I}_{\mathrm{y}, \mathrm{q}=4}^{\mathrm{OY}}=\mathrm{I}_{\mathrm{y}, 4}^{\mathrm{QO}}
$$

derived annual index (17), (18) $\quad I_{\mathrm{y}}^{\mathrm{OY}}=\frac{1}{4} \sum_{\mathrm{q}} \mathrm{I}_{\mathrm{y}, \mathrm{q}}^{\mathrm{OY}}$
7.5.4 (2) Chaining and comparison of the annual indices (1)

y	CP index*	AO	QO	OY
05	151.30	151.30	151.30	151.30
06	201.07	201.07	200.49	200.65
07	232.58	232.58	231.06	239.33
08	224.44	224.44	218.96	227.06

* at constant average prices of 2005

Sequence of CP indices (direct indices): $\mathrm{I}_{05,06}, \mathrm{I}_{05,07}, \ldots$

Products: Annual index formulas (chain index formulas AO, QO, OY): first factor $\mathrm{I}_{55,06}$ (base $05, \mathrm{y}=06$);first two factors $\mathrm{I}_{05,07}$ first three $\mathrm{I}_{05,07}$ etc

1) Sequence of direct $\mathbf{C P}$ indices Laspeyres volume indices

$$
\begin{aligned}
& \text { 2) AO annual indices } \mathrm{I}_{\mathrm{y}}^{\mathrm{AO}}==\frac{\sum \sum \overline{\mathrm{p}}_{\mathrm{i} 0} \mathrm{q}_{\mathrm{i} 1 \mathrm{q}}}{\sum \sum \sum \overline{\mathrm{p}}_{\mathrm{i} 0} \mathrm{q}_{\mathrm{i} 0 \mathrm{q}}} \cdot \frac{\sum \sum \overline{\mathrm{p}}_{\mathrm{i} 1} \mathrm{q}_{\mathrm{i} 2 \mathrm{q}}}{\sum \sum \overline{\mathrm{p}}_{\mathrm{i} 1} \mathrm{q}_{\mathrm{i} 1 \mathrm{q}}} \cdot \ldots \cdot \frac{\sum \sum \overline{\mathrm{p}}_{\mathrm{i}, \mathrm{y}-1} \mathrm{q}_{\mathrm{i}, \mathrm{y}, \mathrm{q}}}{\sum \sum \overline{\mathrm{p}}_{\mathrm{i}, \mathrm{y}-1} \mathrm{q}_{\mathrm{i}, \mathrm{y}-1, \mathrm{q}}} \\
& \text { chain index (19) }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { or equivalently } \quad \mathrm{I}_{\mathrm{y}}^{\mathrm{AO}}==\frac{\overline{\mathrm{V}}_{1,0}}{\overline{\mathrm{~V}}_{0,0}} \cdot \frac{\overline{\mathrm{~V}}_{2,1}}{\overline{\mathrm{~V}}_{1,1}} \cdot \ldots \cdot \frac{\overline{\mathrm{~V}}_{\mathrm{y}, \mathrm{y}-1}}{\overline{\mathrm{~V}}_{\mathrm{y}-1, \mathrm{y}-1}} \quad \begin{array}{l}
\text { follows the rationale of } \\
\text { chain price indices }
\end{array}
\end{array}
$$

7.5.4 (3) Comparison of the annual indices (2)

3) QO annual indices the annual index is not a chain index (only $I_{y, q=4}$ is a chain index (24) chain index) but an unweighted arithmetic mean of the four quarterly indices
when the fourth quarter is representative of the whole year
this applies also to or

$$
\overline{\mathrm{V}}_{\mathrm{y}-1, \mathrm{y}-1, \mathrm{q}=4} \approx \frac{1}{4} \overline{\mathrm{~V}}_{\mathrm{y}-1, \mathrm{y}-1} \text { then } \mathrm{OQ} \approx \mathrm{AO}
$$

4) $\mathbf{O Y}$ annual indices

Although some annual indices are derived from quarterly indices this does not mean that in these cases QNA is consistent with ANA (aggregated QNA volumes equal directly derived ANA volumes)

Experience has shown that QO is the most problematic method regarding nonadditivity in time and inconsistency between QNA and ANA (that is QO will violate "time consistency" in the most pronounced manner)

7.6 (1) Methods and their evaluation

advantages are highlighted

	Annual overlap (AO)	Quarterly overlap (QO)	over the year $($ OY $)$
Comparisons D1 $(\mathbf{y}, \mathbf{q}) \rightarrow(\mathbf{y}, \mathbf{q + 1})$	pure comparison* unbiased (21) same prices depending on quantities only	unbiased $(\mathbf{2 6})=(21)$	not meaningful (31)
D2 $(\mathbf{y}, \mathbf{q}) \rightarrow(\mathbf{y + 1 , q})$	biased (22, 27) changing price weights	unbiased (32)	
D3 $(\mathbf{y}, \mathbf{4}) \rightarrow(\mathbf{y}+\mathbf{1 , 1}, \mathbf{1})$	biased (23)**	unbiased (28)	biased (33)
AC additivity over aggregates	as a rule additivity only in the base (= reference) year (and the following year); all other years non-additive; the dis- crepancy can well be substantial (significant)		

[^5]
7.6 (2) Methods and their evaluation

	Annual overlap (AO)	Quarterly overlap (QO)	over the year (OY)
AC compa- rability + de- composition of growth rates	despite same price weights growth rates yq/y,q-1 (be- tween successive quarters* not easily decomposable	growth rates except between y,q=4 and y+1,q=1 influenced by different prices	growth rates y,q vs. y-1,q depend only on changes in the quantities
AT ** time aggregation	chained QNA figures sum up to ANA results	criterion not (or only approximately for OY) met; need for additional bench-marking	
Main advantage	Time consistency (AT), annual indices (y $\rightarrow \mathrm{y}+1)$ undistorted	quarter on quarter compar. undistorted for all quarters of y	re-valuation necessary for the all quarters of each year
Main dis- advantage	Discontinuity y,4 \rightarrow y+1,1 and in general in q=1 growth rates (difference betwen AO and QO indication of "drift" (time-inconsistency of QO)	no time consistency AT, remediable by benchmarking [con- strained QO]	structural break in any y,q $\rightarrow \mathrm{y}, \mathrm{q}+1 ;$ basically four sepa- rate time series

[^6]
7.6 (2) Methods and their evaluation

	Annual overlap (AO)	Quarterly overlap (QO)	over the year (OY)
quarterly growth rates $\mathbf{y , q} \rightarrow \mathbf{y , q + 1}$	Identical growth for all quarters other than across year joins. As QO is not time consistent (has a "drift") the difference between y,4 and y+1,1 AO and QO growth rate accounts for the drift	dicontin. in the growth rates; index for q=4 is equal to the QO q=4 index*	
Ease of computa- tion	no need to re-value any quarters at average prices of the current year	re-valuation is nec- essary for the fourth quarter only	re-valuation necessary for the all quarters of each year
Usage of the method	majority of EU Member States (for more detail see Kuhnert)	recommended by Eurostat, USA, UK, WIFO (in A)	NL (for unadjusted, AO for adjusted)

In addition to time consistency no discontinuities between successive quarters is desirable because the linking technique should allow growth to be estimated over varying period lengths

* time consistency (AT) is approximately fulfilled because contributions of the quarters to the drift tend to counterbalance each other

7.6 (3) Merits and demerits of the methods

Other observations, some empirical findings and more general statements

AO: breaks in q=1 of y+1	Scheiblecker with ref. to Bikker and own Austrian empirical results: AO is equivalent to QO with a built-in pro-rata benchmarking which is the reason for the break at the beginning of a year; They (asa well as IMF) recommend a "bench-marked QO"* (or "restricted QO) method and/or smoothing of the stepped line of AO figures
QO: QNA- ANA gap	Scheiblecker found that the differences between accumulated QNA and independently derived ANA were the largest in the case of QO
QO: growth rates	Growth rates in y-1,q \rightarrow y,q (previous year) comparison are higher in QO than with the AO technique (Nierhaus)

[^7]
References

Bloem, A., Dippelsman, R and Maehle, N.,(2001) Quarterly National Accounts Manual Concepts, Data Sources and Compilations, Washington IMF

Denton, F.,T. (1971) Journal of the American Statistical Society vol. 66, no. 333, p. 99
Kuhnert, Ingo (Eurostat, Unit C2, National Accounts), Chain linking procedures (and additivity), ppt-presentation held at the first meeting of a European Task Force on Seasonal Adjustment of Quarterly National Accounts (co-chaired by Eurostat and ECB), 15 Febr. 2007
Leifer, Hans-Albert and Tennagels, Peter (2008), Preisbereinigtes Bruttoinlandsprodukt:
Publikationspraxis im In- und Ausland, Wirtschaftsdienst 3/2008, p. 203
Nierhaus, W. (2004) ifo-Schnelldienst 15/2004, p. 14
Scheiblecker, Marcus (2007), (Austrian Institute of Economic Research (WIFO), Chainlinking in quarterly national accounts and the business cycle (in the internet)

Tödter (2005), Karl-Heinz, Umstellung der Deutschen VGR ..., Deutsche Bundesbank, Working Paper (series 1) 31/2005 (Diskussionspapier, Reihe 1, Volkswirtschaftliche Studien)
von der Lippe, Peter and Küter, Janina (2006) Nr. 146, Diskussionsbeiträge, Univ. Essen with another worked out numerical example

[^0]: * see Scheiblecker (2007) for $7+8$

[^1]: * Paragraphs refer to the QNA Manual (of the IMF)

[^2]: * Therefore time consistency

[^3]: * at constant average prices of 2005
 ** at average prices of the preceding year

[^4]: von der Lippe, ECB-Course, Jan. 2010 (Chain 3)

[^5]: * volumes based on the same prices in numerator and denominator
 ** that is there is a break between 4th quarter of one year and 1st of following year; unbiased would be eq. 23a

[^6]: * other growth rates will in general be influenced by a change in the price weights and thus even less comparable into "contributions"
 ** also known as "time consistency"

[^7]: * method of Denton: minimizing the relative difference of the relative adjustments of two neighbouring quarters

