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How Lehr's price index is related to Laspeyres' and Paasche's price index  

There are good reasons to assume that Lehr's price index (P
LE

) lies within the bounds of Paasche 

(P
P
) and Laspeyres (P

L
), such that P

P
 < P

LE
 < P

L
. 

Given that Lehr's price index for two adjacent periods, say 0 and 1 is defined as follows 

LE

01

01

01,i1i

01,i0i

0i0i

1i1iLE

01
Q

V

pq

pq

qp

qp
P 











 where 
2i1i

2i2i1i1i
12,i

qq

qpqp
p







we can relate this index to the other 

two price indices via the respective quantity indices, that is using the equations 
P

01

01L

01
Q

V
P   

(Laspeyres) and 
L

01

01P
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V
P   (Paasche). Again the generalized theorem of v. Bortkiewicz on two 

linear indices
1
 can now be applied as follows:
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Lehr-Paasche 

Using X0 = L
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, hence the covariance is given by 


























00

00

0

0

0

1

qp

qp
Y

p

p
X

q

q
)PA,LEcov(


, so that 
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 should be seen as price index, because the terms 
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simply linear transformations of the price relatives pi1/pi0. This allows concluding: if (transformed) 

price relatives and quantity relatives are negatively correlated (as usually assumed when the 

theorem is applied to P
L
 and P

P
), that is cov(LE,PA) < 0, then Q

LE
 < Q

L
 and consequently P

LE
 > P

P
. 

Lehr-Laspeyres 

To demonstrate the corresponding relationship for P
LE

 and P
L
 requires a tiny modification only. 

With y0 = pt instead of y0 = p0 we get P

t00 QXX   and 
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Y   so that Y  may be regarded 

as reciprocal price index, as 
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. The relevant covariance now is 
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, and the general equation 

YX

)LA,LEcov(
1

Q

Q

X

X
P

01

LE

01

0

1


  reads as follows: if the (transformed) reciprocal price relatives and 

quantity relatives are positively correlated (or equivalently: if  price relatives and quantity relatives 

are negatively correlated), then Q
LE

 > Q
P
 and consequently P

LE
 < P

L
. Note that the weights in the 

weighted covariance are different now from cov(LE,PA). 

                                                 
1
 von der Lippe 2007; 196. 

2
 For convenience of presentation henceforth the subscripts i = 1,.., n will be omitted. Of course summation takes place over 

the n commodities. 


