Peter von der Lippe (2/18/2012)

How Lehr's price index is related to Laspeyres' and Paasche's price index

There are good reasons to assume that Lehr's price index (P^{LE}) lies within the bounds of Paasche (P^{P}) and Laspeyres (P^{L}), such that $\mathrm{P}^{\mathrm{P}}<\mathrm{P}^{\mathrm{LE}}<\mathrm{P}^{\mathrm{L}}$.
Given that Lehr's price index for two adjacent periods, say 0 and 1 is defined as follows
$P_{01}^{L E}=\frac{\sum p_{i 1} q_{i 1}}{\sum p_{i 0} q_{i 0}} \cdot \frac{\sum q_{i 0} \breve{p}_{i, 01}}{\sum q_{i 1} \breve{p}_{i, 01}}=\frac{V_{01}}{Q_{01}^{L E}}$ where $\breve{p}_{i, 12}=\frac{p_{i 1} q_{i 1}+p_{i 2} q_{i 2}}{q_{i 1}+q_{i 2}}$ we can relate this index to the other two price indices via the respective quantity indices, that is using the equations $P_{01}^{L}=\frac{V_{01}}{Q_{01}^{P}}$ (Laspeyres) and $\mathrm{P}_{01}^{\mathrm{p}}=\frac{\mathrm{V}_{01}}{\mathrm{Q}_{01}^{\mathrm{L}}}$ (Paasche). Again the generalized theorem of v . Bortkiewicz on two linear indices ${ }^{1}$ can now be applied as follows: ${ }^{2}$

Lehr-Paasche

Using $\mathrm{X}_{0}=\overline{\mathrm{X}}=\frac{\sum \mathrm{x}_{1} \mathrm{y}_{0}}{\sum \mathrm{x}_{0} \mathrm{y}_{0}}=\frac{\sum \mathrm{q}_{1} \mathrm{p}_{0}}{\sum \mathrm{q}_{10} \mathrm{p}_{0}}=\mathrm{Q}_{01}^{\mathrm{L}}$ and $\mathrm{X}_{1}=\frac{\sum \mathrm{x}_{1} \mathrm{y}_{1}}{\sum \mathrm{x}_{0} \mathrm{y}_{1}}=\frac{\sum \mathrm{q}_{1} \breve{\mathrm{p}}_{01}}{\sum \mathrm{q}_{10} \breve{\mathrm{p}}_{01}}=\mathrm{Q}_{01}^{\text {LE }}$ we have $\overline{\mathrm{Y}}=\sum \frac{\mathrm{y}_{1}}{\mathrm{y}_{0}} \frac{\mathrm{x}_{0} \mathrm{y}_{0}}{\sum \mathrm{x}_{0} \mathrm{y}_{0}}=\frac{\sum \breve{\mathrm{p}}_{0} \mathrm{q}_{0}}{\sum \mathrm{p}_{0} \mathrm{q}_{0}}$, hence the covariance is given by $\operatorname{cov}(L E, P A)=\sum\left(\frac{\mathrm{q}_{1}}{\mathrm{q}_{0}}-\overline{\mathrm{X}}\right)\left(\frac{\breve{p}_{0}}{\mathrm{p}_{0}}-\overline{\mathrm{Y}}\right) \frac{\mathrm{p}_{0} \mathrm{q}_{0}}{\sum \mathrm{p}_{0} \mathrm{q}_{0}}$, so that $\frac{\mathrm{X}_{1}}{X_{0}}=\frac{\mathrm{Q}_{01}^{\mathrm{LE}}}{\mathrm{Q}_{01}^{\mathrm{L}}}=1+\frac{\operatorname{cov}(\mathrm{LE}, \mathrm{PA})}{\overline{\mathrm{X}} \cdot \overline{\mathrm{Y}}}$ $\overline{\mathrm{Y}}=\frac{\sum \breve{\mathrm{p}}_{0} \mathrm{q}_{0}}{\sum \mathrm{p}_{0} \mathrm{q}_{0}}$ should be seen as price index, because the terms $\frac{\breve{\mathrm{p}}_{0}}{\mathrm{p}_{0}}=\frac{\mathrm{q}_{0}}{\mathrm{q}_{0}+\mathrm{q}_{1}}+\frac{\mathrm{q}_{1}}{\mathrm{q}_{0}+\mathrm{q}_{1}} \cdot \frac{\mathrm{p}_{1}}{\mathrm{p}_{0}}$ are simply linear transformations of the price relatives $\mathrm{p}_{\mathrm{i} 1} / \mathrm{p}_{\mathrm{i} 0}$. This allows concluding: if (transformed) price relatives and quantity relatives are negatively correlated (as usually assumed when the theorem is applied to P^{L} and P^{P}), that is $\operatorname{cov}(\mathrm{LE}, \mathrm{PA})<0$, then $\mathrm{Q}^{\mathrm{LE}}<\mathrm{Q}^{\mathrm{L}}$ and consequently $\mathrm{P}^{\mathrm{LE}}>\mathrm{P}^{\mathrm{P}}$.

Lehr-Laspeyres

To demonstrate the corresponding relationship for P^{LE} and P^{L} requires a tiny modification only. With $y_{0}=p_{t}$ instead of $y_{0}=p_{0}$ we get $X_{0}=\bar{X}=Q_{0 t}^{p}$ and $\bar{Y}==\frac{\sum p_{0} q_{0}}{\sum \breve{p}_{0} q_{0}}$ so that \bar{Y} may be regarded as reciprocal price index, as $\frac{\breve{\mathrm{p}}_{0}}{\mathrm{p}_{1}}=\frac{\mathrm{q}_{1}}{\mathrm{q}_{0}+\mathrm{q}_{1}}+\frac{\mathrm{q}_{0}}{\mathrm{q}_{0}+\mathrm{q}_{1}} \cdot\left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{0}}\right)^{-1}$. The relevant covariance now is $\operatorname{cov}($ LE, LA $)=\sum\left(\frac{\mathrm{q}_{1}}{\mathrm{q}_{0}}-\overline{\mathrm{X}}\right)\left(\frac{\stackrel{\mathrm{p}}{0}^{p_{1}}}{\mathrm{p}_{1}} \overline{\mathrm{Y}}\right) \frac{\mathrm{p}_{1} \mathrm{q}_{0}}{\sum \mathrm{p}_{1} \mathrm{q}_{0}}$, and the general equation $\frac{X_{1}}{X_{0}}=\frac{Q_{01}^{\text {LE }}}{Q_{01}^{P}}=1+\frac{\operatorname{cov}(L E, L A)}{\bar{X} \cdot \bar{Y}}$ reads as follows: if the (transformed) reciprocal price relatives and quantity relatives are positively correlated (or equivalently: if price relatives and quantity relatives are negatively correlated), then $\mathrm{Q}^{\mathrm{LE}}>\mathrm{Q}^{\mathrm{P}}$ and consequently $\mathrm{P}^{\mathrm{LE}}<\mathrm{P}^{\mathrm{L}}$. Note that the weights in the weighted covariance are different now from $\operatorname{cov}(L E, P A)$.

[^0]
[^0]: ${ }^{1}$ von der Lippe 2007; 196.
 ${ }^{2}$ For convenience of presentation henceforth the subscripts $\mathrm{i}=1, . ., \mathrm{n}$ will be omitted. Of course summation takes place over the n commodities.

