b) Uses and limitations: PPP and exchange rates

Figure 8.1.2: Uses of international comparisons of prices

International comparisons of prices	
purchasing power parities (PPP)	deflating aggregates
the purpose is to estimate - an equivalent remuneration of employees when working abroad; - gains or losses of purchasing power (compared with the exchange rate); - PPP as indicators of performance in fighting inflation and international competition.	Task within the framework of NA - to make comparisons of level and structure of aggregates* - to aggregate volumes across countries (taking into account the different size of countries) ${ }^{* *}$, as e.g. the European Union

* hence consistency in aggregation requirements should be obeyed more strictly than in the case of PPPs
** in the case of PPPs taking size of countries or of transaction - quantities involved is in general not needed.
c) Bilateral and multilateral (differences)
d) Some methods of bilateral and multilateral comparison

Figure 8.1.3: Comparisons in intertemporal and interspatial case direct comparisons

	four points in time			
	0	1	2	3
0	1	P_{01}	P_{02}	P_{03}
1	P_{10}	1	P_{12}	P_{13}
2	P_{20}	P_{10}	1	P_{23}
3	P_{30}	P_{31}	P_{32}	1

	four countries			
	A	B	C	D
A	1	$P_{A B}$	$P_{A C}$	P_{AD}
B	P_{BA}	1	P_{BC}	P_{BD}
C	P_{CA}	P_{CB}	1	P_{CD}
D	P_{DA}	P_{DB}	P_{DC}	1

Indirect comparisons (via one or two "third" countries)

pair	0 (direct)	1	2
A-B	A-B	A-C-B, A-D-B	A-C-D-B, A-D-C-B
A-C	A-C	A-B-C, A-D-C	A-B-D-C, A-D-B-C
A-D	A-D	A-B-D, A-C-D	A-B-C-D, A-C-B-D
B-C	B-C	B-A-C, B-D-C	B-A-D-C, B-D-A-C
B-D	B-D	B-A-D, B-C-D	B-A-C-D, B-C-A-D
C-D	C-D	C-A-D, C-B-D	C-A-B-D, C-B-A-D
sum	6	12	12

In addition there are also numerous indirect comparisons between any two fixed countries, say A and B, that is for each pair there exist m-2 comparisons between two countries via one third country, (m-2)(m-3) comparisons via two "third countries", and (m-2)(m-3)(m-4) comparisons via three third countries and so on.

Hence in the case of 4 countries we have (see fig. 8.1.3) 6 direct comparisons (shaded) plus

- m-2 $=2$ indirect comparisons via one third country for each of the six pairs, like $\underline{A}-C-\underline{B}$ and $\underline{A}-$ D- \underline{B} in the case of the pair A-B
- $(m-2)(m-3)=2$ indirect comparisons via two third countries for each of the six pairs, like \underline{A} -C-D- \underline{B} and $\underline{A}-D-C-\underline{B}$,
thus altogether $6+12+12=30$ which have to be consistent with one another Correspondingly in the case of $m=5$ countries the number of direct and indirect comparisons between two countries, that have to be consistent with one another grows up to 160 , and with $\mathrm{m}=6$ already to no less than $1565=$ 975 reasonable comparisons..

Figure 8.1.4: Usage of notions, like Laspeyres and Paasche

	1. Unweighted indices (parities)	2. (weighted) price indices
Principle	the country from which the list of commodities is taken	the country from which this list and the weights (expenditure shares) are taken
Laspeyres	(8.1.1) ${ }_{A} L_{B}=\left(\prod_{i=1}^{i=n_{A}} \frac{p_{B i}}{p_{A i}}\right)^{1 / n_{A}}$	(8.1.2) $\quad \mathrm{P}_{\mathrm{AB}}^{\mathrm{L}}=\frac{\sum \mathrm{p}_{\mathrm{B}} \mathrm{q}_{\mathrm{A}}}{\sum \mathrm{p}_{\mathrm{A}} \mathrm{q}_{\mathrm{A}}}$
Paasche	(8.1.1a) ${ }_{\mathrm{A}} \mathrm{P}_{\mathrm{B}}=\left(\prod_{\mathrm{k}=1}^{\mathrm{n}_{\mathrm{B}}} \frac{\mathrm{p}_{\mathrm{Bk}}}{\mathrm{p}_{\mathrm{Ak}}}\right)^{1 / \mathrm{n}_{\mathrm{B}}}$	(8.1.2a) $\quad \mathrm{P}_{\mathrm{AB}}^{\mathrm{P}}=\frac{\sum \mathrm{p}_{\mathrm{B}} \mathrm{q}_{\mathrm{B}}}{\sum \mathrm{p}_{\mathrm{A}} \mathrm{q}_{\mathrm{B}}}$

$\mathrm{A}=$ base country, $\mathrm{B}=$ reference country, P_{A} and P_{B} absolute prices in A and B ; commodities $\mathrm{i}=1, \ldots, \mathrm{n}_{\mathrm{A}}$ preferred by country $\mathrm{A} ; \mathrm{k}=1, \ldots, \mathrm{n}_{\mathrm{B}}=$ preferred by country B

Products and "basic headings" in case 1

e) Consistency in multinational comparisons (the meaning of transitivity)

Fisher parities are not transitive

$$
\begin{aligned}
& \hat{\mathrm{P}}_{\mathrm{AB}}^{\mathrm{F}}(\mathrm{C})=\frac{\mathrm{P}_{\mathrm{CB}}^{\mathrm{F}}}{\mathrm{P}_{\mathrm{CA}}^{\mathrm{F}}}=\mathrm{P}_{\mathrm{AC}}^{\mathrm{F}} \mathrm{P}_{\mathrm{CB}}^{\mathrm{F}}=\sqrt{\frac{\left(\mathbf{p}_{\mathrm{C}}^{\prime} \mathbf{q}_{\mathrm{A}}\right) \cdot\left(\mathbf{p}_{\mathrm{B}}^{\prime} \mathbf{q}_{\mathrm{C}}\right) \cdot\left(\mathbf{p}_{\mathrm{B}}^{\prime} \mathbf{q}_{\mathrm{B}}\right)}{\left(\mathbf{p}_{\mathrm{A}}^{\prime} \mathbf{q}_{\mathrm{A}}\right) \cdot\left(\mathbf{p}_{\mathrm{A}}^{\prime} \mathbf{q}_{\mathrm{C}}\right) \cdot\left(\mathbf{p}_{\mathrm{C}}^{\prime} \mathbf{q}_{\mathrm{B}}\right)}}=\sqrt{\mathrm{V}_{\mathrm{AB}}} \sqrt{\frac{\left(\mathbf{p}_{\mathrm{C}}^{\prime} \mathbf{q}_{\mathrm{A}}\right) \cdot\left(\mathbf{p}_{\mathrm{B}} \mathbf{q}_{\mathrm{C}}\right)}{\left(\mathbf{p}_{\mathrm{A}}^{\prime} \mathbf{q}_{\mathrm{C}}\right) \cdot\left(\mathbf{p}_{\mathrm{C}}^{\prime} \mathbf{q}_{\mathrm{B}}\right)}} \\
& \hat{\mathrm{P}}_{\mathrm{AB}}^{\mathrm{F}(\mathrm{D})}=\frac{\mathrm{P}_{\mathrm{DB}}^{\mathrm{F}}}{\mathrm{P}_{\mathrm{DA}}^{\mathrm{F}}}=\mathrm{P}_{\mathrm{AD}}^{\mathrm{F}} \mathrm{P}_{\mathrm{DB}}^{\mathrm{F}}=\sqrt{\frac{\left(\mathbf{p}_{\mathrm{D}}^{\prime} \mathbf{q}_{\mathrm{A}}\right) \cdot\left(\mathbf{p}_{\mathrm{B}}^{\prime} \mathbf{q}_{\mathrm{D}}\right) \cdot\left(\mathbf{p}_{\mathrm{B}}^{\prime} \mathbf{q}_{\mathrm{B}}\right)}{\left(\mathbf{p}_{\mathrm{A}}^{\prime} \mathbf{q}_{\mathrm{A}}\right) \cdot\left(\mathbf{p}_{\mathrm{A}}^{\prime} \mathbf{q}_{\mathrm{D}}\right) \cdot\left(\mathbf{p}_{\mathrm{D}}^{\prime} \mathbf{q}_{\mathrm{B}}\right)}}=\sqrt{\mathrm{V}_{\mathrm{AB}}} \sqrt{\frac{\left(\mathbf{p}_{\mathrm{D}}^{\prime} \mathbf{q}_{\mathrm{A}}\right) \cdot\left(\mathbf{p}_{\mathrm{B}}^{\prime} \mathbf{q}_{\mathrm{D}}\right)}{\left(\mathbf{p}_{\mathrm{A}}^{\prime} \mathbf{q}_{\mathrm{D}}\right) \cdot\left(\mathbf{p}_{\mathrm{D}}^{\prime} \mathbf{q}_{\mathrm{B}}\right)}}
\end{aligned}
$$

They will in general differ and also differ from $P_{A B}^{F}=\sqrt{V_{A B}} \sqrt{\mathbf{p}_{\mathrm{B}}{ }^{\prime} \mathbf{q}_{\mathrm{A}} / \mathbf{p}_{\mathrm{A}}{ }^{\prime} \mathbf{q}_{\mathrm{B}}}$.
Fig 8.1.5: Bilateral and multilateral comparisons
Laspeyres- and Paasche- approach in bilateral international comparisons ${ }^{1)}$

	Laspeyres approach	

*) Formulas 8.1.2 and 2a see also fig. 8.1.4
*) given (summation of an) identical commodity lists

Figure 8.1.6: From properties of bi-lateral comparisons (between place A and place B) to desired properties of multi-lateral comparisons

Transitivity (concerning multinational comparisons) is possible only if all indirect comparisons between any two countries, A and B that is P_{AB} (or Q_{AB} respectively) obtained by using other countries, like C as link should be equal to the direct index. None of the standard indices in common use (like Laspeyres, Paasche and Fisher) is able to ensure weak (let alone strict) transitivity.

f) Conditions, axioms and required properties in multinational comparisons

Characteristicity requires that commodities and quantity weights are used so that

- not only all countries to be compared are represented, but also that
- commodities and weights provide an adequate coverage and representation of the consumption in the different countries under consideration.
Diewert's set of tests for multinational comparisons (focused on volume comparisons)
D1 positivity and continuity (in all arguments) of volume shares $\mathrm{Q}_{\mathrm{i}}(\mathrm{i}=1, \ldots, \mathrm{~m}$ countries),
D2 symmetric treatment of countries (i.e. invariance of vol. shares to permutation of countries),
D3 symmetric treatment of commodities test,
D4 monetary unit test (= invariance to changes in scale test) corresponds to price dimensionality in the intertemporal case: replacing the vector \mathbf{p}_{i} by $\alpha_{i} \mathbf{p}_{i}$ and \mathbf{q}_{i} by $\beta \mathbf{q}_{i}$ should not affect the volume share of country i. ${ }^{70}$
D5 invariance to changes in units of measurement (plays the part of the commensurability),
D6 country partitioning test: let country h be partitioned into part (province) 1 with a quantity vector $\lambda \mathbf{q}_{\mathrm{h}}$ and a part 2 with $(1-\lambda) \mathbf{q}_{\mathrm{h}}$, and the same price vector for both parts, then the quantity shares should be $\lambda \mathrm{Q}_{\mathrm{h}}$ and (1- λ) Q_{h} (or: small countries should not influence the volume shares of large countries unduly),
D7 irrelevance of tiny countries test: denote $\lambda \mathbf{q}_{k}$ the quantity vector of a (tiny) country k; if $\lambda \rightarrow 0$ quantity shares of all countries should tend to the quantity shares we get if calculations are done exclusive of country k,

[^0]D8 (weak) proportionality (and hence also identity) test w.r.t. prices (or equivalently w. r. t. quantities): upon substitution of \mathbf{p}_{i} by $\alpha_{i} \mathbf{p}_{\mathrm{i}}$ and quantities in the same manner, i.e. substitution of \mathbf{q}_{i} by $\beta_{i} \mathbf{q}_{i}$ - that is equality of the structure (not the level) of prices or quantities across all m countries - should result in quantity shares dependent on β_{i} only (= D8 "w.r.t. quantities")
D9 proportionality test: replace for country h the vector \mathbf{q}_{h} by $\lambda \mathbf{q}_{\mathrm{h}}$ and the scalar (non-normalized) country weight g_{h} by $\lambda \mathrm{g}_{\mathrm{h}}$ then the quantity share of this country h should change from Q_{h} to $\lambda \mathrm{Q}_{h} /\left[1+(\lambda-1] \mathrm{Q}_{\mathrm{h}}\right.$ and the share of any other country $\mathrm{i} \neq \mathrm{h}$ should change accordingly (effect of a changes in the mere size of a country h expressed in a uniform λ-fold change in all its quantities). In particular tests D9 on the one hand and D6/D7 on the other seem to be inconclusive.

Figure 8.1.7: Criteria and requirements for international comparisons
This list should not be misinterpreted as a set of non-contradictory (consistent) and independent axioms as for example the axiomatic system of Eichhorn and Voeller (see sec. 3.3).

Axiom	Meaning	Remark
2 Characteristicity (typicality or equidistance)		
3 Unbiasedness 4 Mean value (or: average) test (4a for prices 4b for quantities)	A parity (price index) should lie within the interval between P^{P} and P^{L}, it should also meet the mean value condition $\{=$ average test $4 a\}$ (the same is desired for quantity indices ${ }^{4}$), $=$ test 4 b \{independent of 4 a$\}$).	Relevance and meaning of no. 4 is difficult to distinguish from no. 3; not clear why no. 4 this should apply to PPPs
5a Additivity (I) (or: structural consistency [of volumes])		Required when deflators or volume indices are used in an accounting framework.
5b Additivity (II) (or: aggregative consistency [of the index formula] see sec. 5.2)	such that the overall Q can easily be decomposed in sub-indices measuring the quantity movement of sub-aggregates	Useful if comparisons are made at varying levels of aggregation ${ }^{5}$ (as for example in National Accounts)
6a $\begin{aligned} & \text { Weak Factor } \\ & \text { Reversal Test } \\ & \text { (WFR) }\end{aligned}$	the value index (V) by $\mathrm{PQ}=\mathrm{V}$; also known as product test	and Q - component
6b $\begin{array}{ll}\text { Strict (Strong) } \\ & \text { Factor Rev. } \\ \text { Test (SFR) }\end{array}$	from Q by interchanging prices and quantities (likewise Q from P)	Implies that the method to derive P (or Q respectively) is symmetric (balanced)
7 Transitivity 7a weak, 7b strict transitivity)		

1) Not only the country but also time reversal test has been criticized: History cannot be made undone, there is no "run backward" and more often than not no meaningful result to expect (it is absurd to ask for the price of a flight-ticket 1890).
2) It is argued that the result cannot be trustworthy exactly because the country reversal test is satisfied. This is particularly convincing in the case of very different countries (e.g. Germany and India).
3) If any two countries are treated symmetrically with respect to quantities q_{A}, q_{B} as in the case of Fisher (or Drobisch) indices the approach is equidistant. Equidistant indices usually are satisfying the product- or even the factor reversal-test.
4) This is supposed to be a necessary condition to perform real-value comparisons between various countries on different levels of aggregation.
5) Requires a method using a single vector of prices (like the vector of average prices of the community in the Geary Khamis method)
6) Known as strict transitivity, or base-land-invariance (a criterion that should be kept distinct from country reversibility. It is possible that transitivity is given only by indirectly comparing with a specified unique "third" country (for example the "central" or "star" country). This is known as weak transitivity.

8.2. Overview of methods proposed for multinational comparisons

a) Introduction into solutions of transitivity
d) Method of minimum spanning trees (MST)
b) Evaluation of methods (adequate for EU)
e) Comments on other methods
c) Block methods (Geary Khamis \{GK\})

a) Methods to solve the transitivity problem

Fig. 8.2.1 is an attempt to find a structure for the multinational methods, however, some methods as for example methods proposed by van Yzeren, or the Minimum Spanning Tree (MST) Method cannot adequately be accounted for. Block methods can be described as follows

1. to derive transitive inter-country comparisons of m countries with respect to price indices $P_{A B}$ or P_{ij} (quantity indices Q_{ij} correspondingly) we have to define m positive real numbers λ_{1}, λ_{2}, $\ldots, \lambda_{\mathrm{m}}$, such that $\mathrm{P}_{\mathrm{ij}}=\lambda_{\mathrm{i}} \lambda_{\mathrm{j}}$ or more convenient $\mathrm{P}_{\mathrm{ij}}=\mathrm{P}_{\mathrm{i}} / \mathrm{P}_{\mathrm{j}}$ and $\mathrm{Q}_{\mathrm{ij}}=\mathrm{Q}_{\mathrm{i}} / \mathrm{Q}_{\mathrm{j}}$
2. In order to comply with the product test the following equation should hold

$$
\begin{equation*}
\mathrm{V}_{\mathrm{kj}}=\Sigma \mathrm{p}_{\mathrm{j}} \mathrm{q}_{\mathrm{j}} / \Sigma \mathrm{p}_{\mathrm{k}} \mathrm{q}_{\mathrm{k}}=\mathrm{P}_{\mathrm{kj}} \mathrm{Q}_{\mathrm{kj}}=\left(\mathrm{P}_{\mathrm{j}} / \mathrm{P}_{\mathrm{k}}\right)\left(\mathrm{Q}_{\mathrm{j}} / \mathrm{Q}_{\mathrm{k}}\right), \mathrm{k}, \mathrm{j}=1, \ldots, \mathrm{~m} \tag{8.2.1}
\end{equation*}
$$

The methods listed in fig. 8.2.1 can be distinguished depending on how $P_{k j}$ and $Q_{k j}$ are defined, viz.

- by either referring to an average (artificial, central, block) country, as for example in the case of the GK method, or
- by averaging over all binary comparisons as regards prices or quantities respectively of the m countries to be compared (EKS- and related methods ${ }^{71}$).

Figure 8.2.1: Overview of most relevant methods, part I (esp. GK and EKS - Method)
Assume $m(i=1, \ldots, m)$ countries forming a block and n commodities $(k=1, \ldots, n)$, and

m vectors of the type	one (for the community) vector of
price vectors, $\mathbf{p}_{\mathrm{i}}^{\prime}=\left[\mathrm{p}_{1 \mathrm{i}} \ldots \mathrm{p}_{\mathrm{ni}}\right]$ for country i with n prices expressed in its own (the i-th country) currency	international prices $\overline{\mathbf{p}}^{\prime}=\left[\overline{\mathrm{p}}_{1} \ldots \overline{\mathrm{p}}_{\mathrm{n}}\right]$ expressed in the block's currency and if necessary also of international quantities $\overline{\mathbf{q}}^{\prime}$
quantity vectors $\mathbf{q}_{i}^{\prime}=\left[\mathrm{q}_{1 \mathrm{i}} \ldots \mathrm{q}_{\mathrm{ni}}\right]$ of n quantities in country i	parities $\hat{\mathbf{p}}^{\prime}=\left[\mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{m}}\right]$ or vector of volumes $\hat{\mathbf{q}}^{\prime}$ as a result of the method

a) methods treating the block as an entity of its own
b) Eltetö - Köves - Szulc Method
c) least squares
d) Central Country Method
e)Country-Product-Dummy Method (a regression method)
f) Geary - Khamis - Method
g) Economic Commission for Latin America Method
h) Caves-Christensen-Diewert Method

[^1]Eq. 8.2.1 may be specialized as follows (X denotes the central- or block-country)

$$
\begin{equation*}
\frac{P_{j}}{P_{k}} \frac{Q_{j}}{Q_{k}}=\frac{P_{x j}^{p}}{P_{x k}^{P}} \frac{Q_{x j}^{L}}{Q_{x k}^{L}}=\left(\frac{\sum p_{j} q_{j}}{\sum p_{x} q_{j}} \frac{\sum p_{x} q_{k}}{\sum p_{k} q_{k}}\right)\left(\frac{\sum p_{x} q_{j}}{\sum p_{x} q_{k}}\right)=\frac{\sum p_{j} q_{j}}{\sum p_{k} q_{k}}=V_{k j} \tag{8.2.2}
\end{equation*}
$$

such that both factors P_{j} / P_{k} and Q_{j} / Q_{k} depend on prices p_{x} (not on quantities q_{x}) of the central country only (note that this is true for the second factor $Q_{x j}^{L} / Q_{x k}^{L}=\sum p_{x} q_{j} / \sum p_{x} q_{k}$). We thus may rightly call methods on this basis average price methods (fig. 8.2.2), of which the GK method (Geary - Khamis) is an example. In a similar vein eq. 8.2.1 may be specialised as

$$
\begin{equation*}
\frac{P_{j}}{P_{k}} \frac{Q_{j}}{Q_{k}}=\frac{P_{x j}^{L}}{P_{x k}^{L}} \frac{Q_{x j}^{P}}{Q_{x k}^{L}}=\left(\frac{\sum p_{j} q_{x}}{\sum p_{k} q_{x}}\right)\left(\frac{\sum p_{j} q_{j}}{\sum p_{j} q_{x}} \frac{\sum p_{k} q_{x}}{\sum p_{k} q_{k}}\right) \tag{8.2.3}
\end{equation*}
$$

where both factors depend on the x-country's quantities only, such that methods based on eq. 8.2.3 (as eg the ECLA method) may be called average basket methods making use of a vector of common quantities \mathbf{q}_{x} or $\overline{\mathbf{q}}^{\prime}=\left[\overline{\mathrm{q}}_{1} \ldots \overline{\mathrm{q}}_{\mathrm{n}}\right]$ rather than of prices. For practical reasons this approach has much less to commend it than the average price methods.

Figure 8.2.2: Overview of some of the most relevant methods, part II (with reference to R. J. Hill 1997 and B. M. Balk 2001)*

Star methods

Symmetric star methods (Hill)

or additive methods (Balk) or block methods
placing an artificial average country at
the centre of the star
(Mean) asymmetric star methods (Hill)
or "generalizations of binary comparisons", or "averaging" methods placing one of the countries in the comparison at the centre of the star ${ }^{1)}$

*) The scheme is again not exhaustive in that some methods like eg the minimum spanning tree, regression and Multivariate Generalized Törnquist (MGT) method are not given mention. Furthermore van Yzeren proposed methods belong to different categories in this system. According to Hill most methods can be regarded as one or another variant of star methods (i.e. making indirect comparisons over a third country, the centre of a star X)

1) this description would of course also fit to the Central Country Method (CCM) 2) using Fisher indices
2) Caves-Christensen-Diewert Method using Törnquist indices
3) much less common variants using e.g. the arithmetic or harmonic mean

$$
\begin{equation*}
\frac{P_{j}}{P_{k}} \frac{Q_{j}}{Q_{k}}=\frac{P_{x j}^{F}}{P_{x k}^{F}} \frac{Q_{x j}^{F}}{Q_{x k}^{F}} \tag{8.2.4}
\end{equation*}
$$

giving rise to the much less known "Fisher star method" listed in fig. 8.2.2. Methods which may be viewed as "generalizations of binary comparisons" (Balk) conceptualise ratios like $\mathrm{P}_{\mathrm{j}} / \mathrm{P}_{\mathrm{k}}$ (and in a similar manner $\mathrm{Q}_{\mathrm{j}} / \mathrm{Q}_{\mathrm{k}}$) as follows ${ }^{72}$

$$
\begin{equation*}
\frac{P_{j}}{P_{k}}=\underset{i}{M}\left(\frac{P_{i j}^{X}}{P_{i k}^{X}}\right)=\underset{i}{M}\left(P_{i j}^{X} P_{k i}^{X}\right) \tag{8.2.5}
\end{equation*}
$$

where $\underset{i}{M}(\ldots)$ denotes a mean of binary comparisons (over all $i=1, \ldots, m$ countries) using index formulas of type X. For example the well known formula in the EKS method

$$
\begin{equation*}
\mathrm{P}_{\mathrm{AC}}^{\mathrm{EKS}}=\left[\left(\mathrm{P}_{\mathrm{AC}}^{\mathrm{F}} \mathrm{P}_{\mathrm{AA}}^{\mathrm{F}}\right)\left(\mathrm{P}_{\mathrm{BC}}^{\mathrm{F}} \mathrm{P}_{\mathrm{AB}}^{\mathrm{F}}\right)\left(\mathrm{P}_{\mathrm{CC}}^{\mathrm{F}} \mathrm{P}_{\mathrm{AC}}^{\mathrm{F}}\right)\right]^{1 / 3}=\sqrt[3]{\left(\mathrm{P}_{\mathrm{AC}}^{\mathrm{F}}\right)^{2} \mathrm{P}_{\mathrm{AB}}^{\mathrm{F}} \mathrm{P}_{\mathrm{BC}}^{\mathrm{F}}} \tag{8.2.5a}
\end{equation*}
$$

[^2]represents a geometric mean of bilateral comparisons on the basis of Fisher $(X=F)$ indices.
\[

$$
\begin{align*}
& \frac{P_{j}}{P_{k}}=\left(\frac{P_{1 j}^{\mathrm{F}}}{\mathrm{P}_{1 \mathrm{k}}^{\mathrm{F}}} \frac{\mathrm{P}_{2 \mathrm{j}}^{\mathrm{F}}}{\mathrm{P}_{2 \mathrm{k}}^{\mathrm{F}}} \cdots \frac{\mathrm{P}_{\mathrm{mj}}^{\mathrm{F}}}{\mathrm{P}_{\mathrm{mk}}^{\mathrm{F}}}\right)^{1 / m} \text { and using } \mathrm{P}_{\mathrm{BA}}^{\mathrm{F}}=1 / \mathrm{P}_{\mathrm{AB}}^{\mathrm{F}} \text { we get } \tag{8.2.5b}\\
& \left(\frac{\mathrm{P}_{\mathrm{AC}}^{\mathrm{F}}}{\mathrm{P}_{\mathrm{AA}}^{\mathrm{F}}} \frac{\mathrm{P}_{\mathrm{BC}}^{\mathrm{F}}}{\mathrm{P}_{\mathrm{BA}}^{\mathrm{F}}} \frac{\mathrm{P}_{\mathrm{CC}}^{\mathrm{F}}}{\mathrm{P}_{\mathrm{AC}}^{\mathrm{F}}}\right)^{1 / 3}=\sqrt[3]{\left(\mathrm{P}_{\mathrm{AC}}^{\mathrm{F}}\right)^{2} \mathrm{P}_{\mathrm{AB}}^{\mathrm{F}} \mathrm{P}_{\mathrm{BC}}^{\mathrm{F}}} \text { in the three - countries example. }
\end{align*}
$$
\]

b) Evaluation of methods adequate for intra-EU comparisons

Figure 8.2.3: Criteria to find suitable methods for inter-EU-comparisons

		Evaluation of EU-price-parity models			
		\checkmark			\rightarrow
$\underline{\text { basic conditions }}$		required properties		desirable properties	additional prop.
imposed by side-conditions of data collection		fundamental operational requirements		providing advantages in application ${ }^{2)}$	properties inherent in the method
B: existence of list of commodities ${ }^{1)}$		R1: full scale closed comparison		D1: additivity in deflation (of volumes) ${ }^{3)}$	A1: accounting for country size
		R2: transitivity		D2: factor reversibility	A2: other prop. ${ }^{4)}$
∇		\downarrow			
the only methods left passing criteria B, R1 and R2 are GK and EKS					
\downarrow					
method		dditivity		facto	1: country size ${ }^{5}$
GK	not satisfied comparisons the block as	uasi-additivity in a country i to whole)		d (on nd qu ntly	of country i afresults via quan- $\mathrm{q}_{\mathrm{ki}}{ }^{7 \text {) }}$
EKS	violated ${ }^{6)}$		satis	$\mathrm{d}^{6)}$	nfluence

1) incomplete list of commodities can be handled
2) also theoretical elegance 3) = structural consistency in the sense of sec. $\mathbf{5 . 2}$
3) meaningful parameters provided as by-product of the method, i.e. methods permits interesting interpretations
4) or "importance" of a country 6) both results due to EKS parities being based on geometric means
5) however counter-intuitively

c) Block methods: the Geary-Khamis (GK) method

The key idea of the GK-method is to determine the "international" prices $\overline{\mathrm{p}}_{\mathrm{k}}$ of commodities $(k=1,2, \ldots, n)$ and m currency converters c_{i} (of country $i=1,2, \ldots, m$) simultaneously. The common (community-, or block-) price $\overline{\mathrm{p}}_{\mathrm{k}}$ of commodity k is defined with the help of the m "currency converter" c_{i} of country i as follows (a system of n equations, the summation takes place over m countries):

$$
\begin{equation*}
\overline{\mathrm{p}}_{\mathrm{k}}=\frac{\sum \mathrm{c}_{\mathrm{i}} \mathrm{p}_{\mathrm{ki}} \mathrm{q}_{\mathrm{ki}}}{\sum \mathrm{q}_{\mathrm{ki}}}=\frac{\sum \mathrm{c}_{\mathrm{i}} \mathrm{p}_{\mathrm{ki}} \mathrm{q}_{\mathrm{ki}}}{\mathrm{Q}_{\mathrm{k}}}=\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{c}_{\mathrm{i}} \mathrm{p}_{\mathrm{ki}} \alpha_{\mathrm{ki}} \text {, where } \alpha_{\mathrm{ki}}=\mathrm{q}_{\mathrm{ki}} / \mathrm{Q}_{\mathrm{k}} \text { or } \overline{\mathrm{p}}_{\mathrm{k}}=\sum \mathrm{c}_{\mathrm{i}} \tilde{\mathrm{p}}_{\mathrm{ki}} \tag{8.2.6}
\end{equation*}
$$

where $\tilde{\mathrm{p}}_{\mathrm{ki}}$ denote unit values and Q_{k} is a sum of quantities (over all m countries), α_{ki} is a structural variable accounting for the size of a country i, and c_{j} is, as aforementioned, a currency converter (reciprocal exchange rate) ${ }^{73}$ in order to allow for expenditures in the numera-

[^3]tor expressed in the same common currency unit. The converters c_{i} define the price level [or parity] of country i with respect to the whole community as follows
(8.2.7) $\quad c_{i}=\frac{\sum \overline{\mathrm{p}}_{\mathrm{k}} \mathrm{q}_{\mathrm{ki}}}{\sum \mathrm{p}_{\mathrm{ki}} \mathrm{q}_{\mathrm{ki}}}=\frac{\sum \overline{\mathrm{p}}_{\mathrm{k}} \mathrm{q}_{\mathrm{ki}}}{V_{\mathrm{i}}}$ a system of m equations for m countries.

In eq. 8.2.7 summation takes place over $\mathrm{k}=1, \ldots, \mathrm{n}$ commodities, and V_{i} is the total value of country i). The system allows, however, only for calculation of $m-1$ coefficients c_{i} expressed in units of one of the c_{i} - coefficients, say c_{2}, c_{3}, \ldots in units of c_{i}. This is sufficient as the aim is to define (purchasing power) parities between any two countries, A and B with reference to the community as a whole. The GK-parity between countries A, B now is defined as follows

$$
\begin{equation*}
P_{A B}^{G K}=\frac{c_{A}}{c_{B}}=\frac{e_{B}}{e_{A}}=\frac{\sum p_{\mathrm{kB}} \mathrm{q}_{\mathrm{kB}} / \sum \overline{\mathrm{p}}_{\mathrm{k}} \mathrm{q}_{\mathrm{kB}}}{\sum \mathrm{p}_{\mathrm{kA}} \mathrm{q}_{\mathrm{kA}} / \sum \overline{\mathrm{p}}_{\mathrm{k}} \mathrm{q}_{\mathrm{kA}}} . \tag{8.2.8}
\end{equation*}
$$

This way of expressing GK-parity between any two countries, A (base) and B makes clear that

1. identity is given, that is when all m prices for the k -th commodity are equal $\mathrm{p}_{\mathrm{k} 1}=\ldots \mathrm{p}_{\mathrm{km}}$ $=\overline{\mathrm{p}}_{\mathrm{k}}$ then all parities will be unity, or $\mathrm{c}_{\mathrm{i}}=\mathrm{c}_{\mathrm{j}}=1$;
2. (strict) transitivity as well as country reversibility holds since
(8.2.8a) $\quad P_{A C}^{G K}=P_{A B}^{G K} P_{B C}^{G K}=\left(\frac{c_{A}}{c_{B}}\right)\left(\frac{c_{B}}{c_{C}}\right)$,
due to using a constant (for all countries) vector, $\overline{\mathbf{p}}^{\prime}$ all indices, $\mathrm{P}_{\mathrm{AB}}^{\mathrm{GK}}, \mathrm{V}_{\mathrm{AB}}$, and $\mathrm{Q}_{\mathrm{AB}}^{\mathrm{GK}}$ are transitive;
3. the product test (weak factor reversal test) is met since the factor antithesis of $\mathrm{P}_{\mathrm{AB}}^{\mathrm{GK}}$ is

$$
\begin{equation*}
\mathrm{Q}_{A B}^{G K}=\frac{\sum \overline{\mathrm{p}}_{\mathrm{k}} \mathrm{q}_{\mathrm{kB}}}{\sum \overline{\mathrm{p}}_{\mathrm{k}} \mathrm{q}_{\mathrm{kA}}}=\frac{\mathrm{Q}_{\mathrm{B}}}{\mathrm{Q}_{\mathrm{A}}} \text {, but the (strict) factor reversal test is not } \text { satisfied, } \tag{8.2.8b}
\end{equation*}
$$ because the quantity index gained from $\mathrm{P}_{\mathrm{AB}}^{\mathrm{GK}}$ by interchanging prices and quantities would be $\mathrm{Q}_{\mathrm{AB}}^{*}=\frac{\sum \overline{\mathrm{q}}_{\mathrm{k}} \mathrm{p}_{\mathrm{kA}}}{\sum \overline{\mathrm{q}}_{\mathrm{k}} \mathrm{p}_{\mathrm{kB}}} \frac{\sum \mathrm{p}_{\mathrm{kB}} \mathrm{q}_{\mathrm{kB}}}{\sum \mathrm{p}_{\mathrm{kA}} \mathrm{q}_{\mathrm{kA}}} \neq \mathrm{Q}_{\mathrm{AB}}^{\mathrm{GK}}=\frac{\sum \overline{\mathrm{p}}_{\mathrm{k}} \mathrm{q}_{\mathrm{kB}}}{\sum \overline{\mathrm{p}}_{\mathrm{k}} \mathrm{q}_{\mathrm{kA}}}$.

4. Both indices, $P_{A B}^{G K}$ and $Q_{A B}^{G K}$ are "additive" index functions:

$\mathrm{V}_{\mathrm{A}}=\Sigma \mathrm{p}_{\mathrm{kA}} \mathrm{q}_{\mathrm{kA}}$	$\mathrm{Q}_{\mathrm{A}}=\Sigma \overline{\mathrm{p}}_{\mathrm{k}} \mathrm{q}_{\mathrm{kA}}$	$\mathrm{c}_{\mathrm{A}}=\mathrm{Q}_{\mathrm{A}} / \mathrm{V}_{\mathrm{A}}$
$\mathrm{V}_{\mathrm{B}}=\Sigma \mathrm{p}_{\mathrm{kB}} \mathrm{q}_{\mathrm{kB}}$	$\mathrm{Q}_{\mathrm{B}}=\Sigma \overline{\mathrm{p}}_{\mathrm{k}} \mathrm{q}_{\mathrm{kB}}$	$\mathrm{c}_{\mathrm{B}}=\mathrm{Q}_{\mathrm{B}} / \mathrm{V}_{\mathrm{B}}$
$\mathrm{V}_{\mathrm{AB}}=\frac{\mathrm{V}_{\mathrm{B}}}{\mathrm{V}_{\mathrm{A}}}$	$\mathrm{Q}_{\mathrm{AB}}^{\mathrm{GK}}=\frac{\mathrm{Q}_{\mathrm{B}}}{\mathrm{Q}_{\mathrm{A}}}$	$\mathrm{P}_{\mathrm{AB}}^{\mathrm{GK}}=\frac{\mathrm{c}_{\mathrm{A}}}{\mathrm{c}_{\mathrm{B}}}$

By virtue of these relationships all GK - indices, P^{GK} and Q^{GK} can be broken down to the commodity level and aggregated to whichever subindex is wanted. This does not, however, imply that structural consistency of volumes in deflation is given.
5. What is responsible for $\mathrm{c}_{\mathrm{A}}, \mathrm{c}_{\mathrm{B}}$ etc., and hence also for $\mathrm{P}_{\mathrm{AB}}^{\mathrm{GK}}$ is the extent to which the prices in A, or B respectively differ from the prices valid for the community of all m countries, or in other words, what matters is the extent to which

- values (quantities of country i expressed in prices in their own currency) differ from
- volumes (that is "deflated" values $\Sigma \overline{\mathrm{p}}_{\mathrm{k}} \mathrm{q}_{\mathrm{ki}}=\mathrm{Q}_{\mathrm{i}}$, or quantities of country i valued at common prices).

6. The GK-method tends to a price index P^{GK} which is dominated by the small (unimportant,) country while the quantity index Q^{GK} is likely to be dominated by the big (important) country.

In Gerardi's method the international price $\overline{\mathrm{p}}_{\mathrm{k}}$ of commodity k (in which c_{i} is expressed in the currency unit of the community) is an unweighted geometric mean (no country weights)

$$
\begin{equation*}
\breve{\mathrm{p}}_{\mathrm{k}}=\left(\prod_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{c}_{\mathrm{i}} \mathrm{p}_{\mathrm{ki}}\right)^{1 / \mathrm{m}} \tag{8.2.9}
\end{equation*}
$$

d) The method of "minimum spanning trees" (MST-Method)

The basis of the method is the notion of a "distance" (dissimilarity) between any two countries as for example A and B using the Laspeyres-Paasche Spread or "Paasche-Laspeyres-Spread" (PLS) defined as

$$
\begin{equation*}
\mathrm{D}(\mathrm{~A}, \mathrm{~B}))=\left|\ln \left(\frac{\mathrm{P}_{\mathrm{AB}}^{\mathrm{L}}}{\mathrm{P}_{\mathrm{AB}}^{\mathrm{P}}}\right)\right|=\left|\ln \left(\frac{\mathrm{P}_{\mathrm{AB}}^{\mathrm{P}}}{\mathrm{P}_{\mathrm{AB}}^{\mathrm{L}}}\right)\right| . \tag{8.2.10}
\end{equation*}
$$

If two countries are quite similar with respect to the structure of consumption the results of a P^{L} and a P^{P}-type index would not differ much such that D comes close to $\ln (1)=0$.
A spanning tree is a connection between a country (point, vertix, edge) i and each of the remaining m - 1 countries such that each country is (indirectly) linked with each other country in one way only. The "star" (second example in fig. 8.2.4) is a special spanning tree just like the chain (= "string") A-B-C-D-E. There are no two or more paths connecting any two countries (a situation which would be called "cycle"). Fig. 8.2.4 gives some examples of spanning trees for $m=5$ countries s along with fictitious numerical values of the distances ${ }^{74}$ (ranging from 0.07 to 0.12) of the matrix of distances.

Figure 8.2.4: The notion of a "spanning tree"

-	0.08			
	-		0.07	
		-	0.10	
			-	0.12

sum: 0.37

-	0.08				
	-	0.11	0.07		
		-			
			-	0.12	
				-	
0.38					

0.38

The criterion for the minimum spanning tree (MST) is the sum of the distances which is in the examples of fig. 8.2.4 amounting to $0.37,0.39$ and 0.38 . The minimum is obviously 0.37 such that the left configuration is the MST for the example ${ }^{75}$.
The criterion of the smallest summed $\mathrm{m}-1$ distances is equivalent to other reasonable criteria and it amounts to the distance of the chained spreads because
$\mathrm{D}(\mathrm{A}, \mathrm{B})+\mathrm{D}(\mathrm{B}, \mathrm{C})=\left|\ln \left(\frac{\mathrm{P}_{\mathrm{AB}}^{\mathrm{L}}}{\mathrm{P}_{\mathrm{AB}}^{\mathrm{P}}} \frac{\mathrm{P}_{\mathrm{BC}}^{\mathrm{L}}}{\mathrm{P}_{\mathrm{BC}}^{\mathrm{P}}}\right)\right| \neq \mathrm{D}(\mathrm{A}, \mathrm{C})=\left|\ln \left(\frac{\mathrm{P}_{\mathrm{AC}}^{\mathrm{L}}}{\mathrm{P}_{\mathrm{AC}}^{\mathrm{P}}}\right)\right|$
Transitivity would hold if and only if P^{L} and P^{P} indices were transitive

[^4]
e) Other methods

1. Regression (= Country-Product-Dummy (CPD) Method), 2. Model based (COLI-type), 3. Multilateral generalized Törnquist method (MGT-index). With $v_{i k}=p_{i k} q_{i k} / \Sigma p_{i k} q_{i k}$ the share of total expenditure in country I spent n commodity k , the MGT quantity index is given as

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{ij}}^{\mathrm{MGT}}=\prod_{\mathrm{k}=1}^{\mathrm{n}}\left(\frac{\mathrm{q}_{\mathrm{jk}}}{\mathrm{q}_{\mathrm{ik}}}\right)^{\mathrm{m}_{\mathrm{k}}} \text { and by analogy the MGT price index } P_{\mathrm{ij}}^{\mathrm{MGT}}=\prod_{\mathrm{k}=1}^{\mathrm{n}}\left(\mathrm{p}_{\mathrm{jk}} / \mathrm{p}_{\mathrm{ik}}\right)^{\mathrm{m}_{\mathrm{k}}} \tag{8.2.12}
\end{equation*}
$$

where m_{k} is (in contrast to the "usual" Törnquist index) a function of expenditure shares of all m countries, not only of just the two compared ones, viz. country i (base) and j. Thus for example Walsh-type generalized MGT-index has been proposed where a geometric mean of all m countries as regards the expenditure share of commodity k to be taken for m_{k}

$$
\mathrm{m}_{\mathrm{k}}=\prod_{\mathrm{i}=1}^{\mathrm{m}}\left(\mathrm{v}_{\mathrm{ik}}\right)^{1 / \mathrm{m}} / \sum_{\mathrm{k}=1}^{\mathrm{n}} \prod_{\mathrm{i}=1}^{\mathrm{m}}\left(\mathrm{v}_{\mathrm{ik}}\right)^{1 / \mathrm{m}}
$$

8.3. Block methods

a) Central Country Method (CCM)	c) Balanced method of van Yzeren
b) Geary Khamis (GK) method	d) Other block methods (Gerardi, ECLA)

a) Central Country Method (CCM)

$$
\begin{equation*}
\hat{\mathrm{P}}_{\mathrm{AB}}^{\mathrm{L}}=\mathrm{P}_{\mathrm{AB}(\mathrm{X})}^{\mathrm{L}}=\frac{\mathrm{P}_{\mathrm{XB}}^{\mathrm{L}}}{\mathrm{P}_{\mathrm{XA}}^{\mathrm{L}}}=\frac{\sum \mathrm{p}_{\mathrm{B}} \mathrm{q}_{\mathrm{X}}}{\sum \mathrm{p}_{\mathrm{x}} \mathrm{q}_{\mathrm{X}}} / \frac{\sum \mathrm{p}_{\mathrm{A}} \mathrm{q}_{\mathrm{X}}}{\sum \mathrm{p}_{\mathrm{x}} \mathrm{q}_{\mathrm{x}}}=\frac{\sum \mathrm{p}_{\mathrm{B}} \mathrm{q}_{\mathrm{X}}}{\sum \mathrm{p}_{\mathrm{A}} \mathrm{q}_{\mathrm{X}}} . \tag{8.3.1}
\end{equation*}
$$

Any two countries, A and B are compared only via X which therefore is also called the "star" country (or "bridge" or "link" country when the CCM is applied to two (or more) groups of countries). Note that the direction of the arrows is from base country to reference country. Thus $\mathrm{P}_{\mathrm{BA}(\mathrm{X})}$ instead of $\mathrm{P}_{\mathrm{AB}(\mathrm{X})}$ means to invert the direction of the arrow. CCM is a method easy to understand, however the results are not unique but depending on which choice has been made concerning the central country. Hence only weak transitivity is met.

$$
\begin{equation*}
\mathrm{P}_{\mathrm{BA}(\mathrm{X})}=\left(\mathrm{P}_{\mathrm{AB}(\mathrm{X})}\right)^{-1} \text { (country reversibility holds) } \tag{8.3.2}
\end{equation*}
$$

for all countries, A and B , as well as the circular test

$$
\begin{equation*}
\mathrm{P}_{\mathrm{AC}(\mathrm{X})}^{\mathrm{L}}=\mathrm{P}_{\mathrm{AB}(\mathrm{X})}^{\mathrm{L}} \mathrm{P}_{\mathrm{BC}(\mathrm{X})}^{\mathrm{L}} \text { since } \frac{\sum \mathrm{p}_{\mathrm{C}} \mathrm{q}_{\mathrm{X}}}{\sum \mathrm{p}_{\mathrm{A}} \mathrm{q}_{\mathrm{X}}}=\frac{\sum \mathrm{p}_{\mathrm{B}} \mathrm{q}_{\mathrm{X}}}{\sum \mathrm{p}_{\mathrm{A}} \mathrm{q}_{\mathrm{X}}} \frac{\sum \mathrm{p}_{\mathrm{C}} \mathrm{q}_{\mathrm{X}}}{\sum \mathrm{p}_{\mathrm{B}} \mathrm{q}_{\mathrm{X}}} \tag{8.3.3}
\end{equation*}
$$

Note that $\mathrm{P}_{\mathrm{AB}(\mathrm{X})}^{\mathrm{L}}$ is still a Laspeyres type index, the identity of the base country (A) and the country from which the weights come (X) is destroyed, however. When Paasche parities are constructed in the same manner (by relating both, A and B to the third country X) we get more complicate expressions $P_{A B(X)}^{P}=\frac{P_{X B}^{P}}{P_{X A}^{P}}=\frac{\sum p_{X} q_{A}}{\sum p_{A} q_{A}} \frac{\sum p_{B} q_{B}}{\sum p_{X} q_{B}}$ etc.

CCM delivers non-characteristic results (Tab. 8.3.1): In multilateral comparisons the criterion of "characteristicity" or "specificity" is supposed to be desirable. This means that the weights q should be specific (typical) for the country in question (or the countries to be compared).

Table 8.3.1: Characteristicity (specificity) of the CCM solution*

Price index P			Quantity index Q formulaquantities in P referring to
specificity	prices in Q refer- ring to		
Laspeyres $\mathrm{P}_{\mathrm{AB}(\mathrm{X})}^{\mathrm{L}}$	X only	nonspecific	A and B
Paasche $\mathrm{P}_{\mathrm{AB}(\mathrm{X})}^{\mathrm{P}}$	A and B	equi-specific	A, B and X
Fisher $\mathrm{P}_{\mathrm{AB}(\mathrm{X})}^{\mathrm{F}}$	A, B and X	specific**	A, B and X

* all statements can easily be verified looking at eqs. 8.3.1, 4 and 5
** but three budgets involved, so that it is of particular interest that X is representative for all countries

b) Geary Khamis Method

The general approach of the Geary-Khamis method consists in simultaneously determining a price level of the "community" (or "block" of countries) as a whole (vector $\overline{\mathbf{p}}$ ' of n prices for n commodities) and a vector of parities $\hat{\mathbf{p}}^{\prime}=\left[\mathrm{P}_{12}^{\mathrm{GK}} \mathrm{P}_{13}^{\mathrm{GK}} \ldots\right]$ with respect to a numeraire country as for example $\mathrm{i}=1$.

Figure 8.3.2: The main relationships in the GK-method

determine simultaneously using national prices and quantities $\mathrm{p}_{\mathrm{ki}}, \mathrm{q}_{\mathrm{ki}}$	
n community prices ($\mathrm{k}=1, \ldots, \mathrm{n}$)	m currency converters ($\mathrm{i}=1, \ldots, \mathrm{~m}$)
(8.2.6) $\quad \overline{\mathrm{p}}_{\mathrm{k}}=\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{c}_{\mathrm{i}} \mathrm{p}_{\mathrm{ki}} \frac{\mathrm{q}_{\mathrm{ki}}}{\sum_{\mathrm{i}} \mathrm{q}_{\mathrm{ki}}}=\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{c}_{i} \mathrm{p}_{\mathrm{ki}} \alpha_{\mathrm{ki}}$	$\longleftrightarrow(8.2 .7) \quad c_{i}=\sum_{k=1}^{n} \bar{p}_{k} \mathrm{q}_{\mathrm{ki}} / \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{p}_{\mathrm{ki}} \mathrm{q}_{\mathrm{ki}}=\mathrm{Q}_{\mathrm{i}} / \mathrm{V}_{\mathrm{i}}$
n equations, functions of national prices p_{ki} and national quantities q_{ki}	m equations, relating national price levels to price level of the community
\downarrow	\downarrow
m quantity indices	m price indices
$\text { (8.2.8b) } \mathrm{Q}_{\mathrm{ij}}^{\mathrm{GK}}=\frac{\sum \overline{\mathrm{p}}_{\mathrm{k}} \mathrm{q}_{\mathrm{kj}}}{\sum \overline{\mathrm{p}}_{\mathrm{k}} \mathrm{q}_{\mathrm{ki}}}=\frac{\mathrm{Q}_{\mathrm{j}}}{\mathrm{Q}_{\mathrm{i}}}$	(8.2.8) $\quad P_{\text {ij }}^{G K}=\frac{c_{i}}{c_{j}}=\frac{\sum \overline{\mathrm{p}}_{\mathrm{k}} \mathrm{q}_{\mathrm{ki}} / \sum \mathrm{p}_{\mathrm{ki}} \mathrm{q}_{\mathrm{ki}}}{\sum \overline{\mathrm{p}}_{\mathrm{k}} \mathrm{q}_{\mathrm{kj}} / \sum \mathrm{p}_{\mathrm{kj}} \mathrm{q}_{\mathrm{kj}}}$

The major shortcomings of the GK-method are

- the factor reversal test is violated, the product test satisfied, however (see sec. 8.2),
- equi-characteristicity is violated; interestingly the result is in fact more characteristic for a peripherical than for a central country,
- as to consistency in aggregation (criterion 4 b in tab. 8.1.7) is violated while structural consistency (of volumes) is satisfied by virtue of using common (community) prices for all countries,
- the GK-index system also violates the price dimensionality axiom in the sense of a uniform (λ fold) change of some, not necessarily all prices,
- finally an argument of considerable practical importance concerning data requirements: the GK method assumes data on individual prices and quantities (referring to each of the n identically defined commodities in the m countries) whilst in practice very often only binary-comparison data on the level of index numbers (comprising all n quantities) are available ${ }^{76}$.

[^5]
c) Balanced method of van Yzeren

d) Other block methods

$$
\begin{equation*}
P_{A B}^{E C L A}=\frac{\sum_{k=1}^{n} p_{k B}\left[\sum_{i=1}^{m} q_{k i}\right]}{\sum_{k=1}^{n} p_{k A}\left[\sum_{i=1}^{m} q_{k i}\right]}=\frac{\sum_{k=1}^{n} p_{k B} Q_{k}}{\sum_{k=1}^{n} p_{k A} Q_{k}}=\frac{\sum_{k=1}^{n} p_{k B} \bar{q}_{k}}{\sum_{k=1}^{n} p_{k A} \bar{q}_{k}} \tag{8.3.29}
\end{equation*}
$$

Thus prices in the numerator $\left(\mathrm{p}_{\mathrm{kB}}\right)$ and in the denominator $\left(\mathrm{p}_{\mathrm{kA}}\right)$ are weighted with the same quantities referring to the total block of m countries (in contrast to weights, $q_{i A}$ or $q_{i B}$ respectively, in the Laspeyres - or Paasche approach). Obviously weights $\overline{\mathrm{q}}_{\mathrm{k}}$ guarantee transitivity in the same way in which a Lowe index P^{LW} satisfies the circular test in intertemporal comparison of any three points

$$
\begin{equation*}
\mathrm{P}_{0 \mathrm{t}}^{\mathrm{LW}}=\mathrm{P}_{0 \mathrm{~s}}^{\mathrm{LW}} \mathrm{P}_{\mathrm{st}}^{\mathrm{LW}}=\frac{\sum \mathrm{p}_{\mathrm{s}} \overline{\mathrm{q}}}{\sum \mathrm{p}_{0} \overline{\mathrm{q}}} \frac{\sum \mathrm{p}_{\mathrm{t}} \overline{\mathrm{q}}}{\sum \mathrm{p}_{\mathrm{s}} \overline{\mathrm{q}}}=\frac{\sum \mathrm{p}_{\mathrm{t}} \overline{\mathrm{q}}}{\sum \mathrm{p}_{0} \overline{\mathrm{q}}}, \tag{8.3.30}
\end{equation*}
$$

since weights in P^{LW} are common to all periods, not depending on either of these periods, $0, \mathrm{~s}$ or t .

8.3. Averaging methods for multinational comparisons

a) The EKS-method (formula and interpretation) \quad b) Caves-Christensen-Diewert (CCD) method

a) The EKS-method

Formula and interpretation

$$
\begin{equation*}
\mathrm{P}_{\mathrm{AB}}^{\mathrm{EKS}}=\left[\prod_{\mathrm{i}}^{\mathrm{m}} \mathrm{P}_{\mathrm{iB}}^{\mathrm{F}} \mathrm{P}_{\mathrm{Ai}}^{\mathrm{F}}\right]^{1 / \mathrm{m}}=\left[\prod_{\mathrm{i}}^{\mathrm{m}} \frac{\mathrm{P}_{\mathrm{Ai}}^{\mathrm{F}}}{\mathrm{P}_{\mathrm{Bi}}^{\mathrm{F}}}\right]^{1 / \mathrm{m}}=\left[\left(\mathrm{P}_{\mathrm{AB}}^{\mathrm{F}}\right)^{2} \prod_{\mathrm{i} \neq \mathrm{A}} \mathrm{P}_{\mathrm{Ai}}^{\mathrm{F}} \prod_{\mathrm{i} \neq \mathrm{B}} \mathrm{P}_{\mathrm{iB}}^{\mathrm{F}}\right]^{1 / \mathrm{m}} . \tag{8.4.1}
\end{equation*}
$$

Equation 8.4.1 also shows that P_{AB} depends not only on prices and quantities of the countries $\mathrm{i}=\mathrm{A}$ and $\mathrm{i}=\mathrm{B}$, but on all other $\mathrm{m}-2$ countries. Thus if the set of countries is extended all price indices must be recalculated. The EKS method therefore is a closed system of parities.

How to read eq. 8.4.1? Two countries $(\mathrm{m}=2)$, A and B only:
A product of two factors has to be calculated, the first factor accounting for $\mathrm{i}=\mathrm{A}$ and the second for $\mathrm{i}=\mathrm{B}$ to get $\mathrm{P}_{\mathrm{AB}}^{\mathrm{EKS}}=\left[\left(\mathrm{P}_{\mathrm{AB}}^{\mathrm{F}} \mathrm{P}_{\mathrm{AA}}^{\mathrm{F}}\right)\left(\mathrm{P}_{\mathrm{BB}}^{\mathrm{F}} \mathrm{P}_{\mathrm{AB}}^{\mathrm{F}}\right)\right]^{1 / 2}=\mathrm{P}_{\mathrm{AB}}^{\mathrm{F}}$.
Hence with only two countries involved the EKS-parity equals the Fisher-parity.
Three countries $(\mathrm{m}=3), \mathrm{A}, \mathrm{B}$ and C (each parity a product of three factors):

$$
\mathrm{P}_{\mathrm{AB}}^{\mathrm{EKS}}=[\underbrace{\mathrm{P}_{\mathrm{AB}}^{\mathrm{F}} \mathrm{P}_{\mathrm{AA}}^{\mathrm{F}}}_{\mathrm{i}=\mathrm{A}} \underbrace{\mathrm{P}_{\mathrm{BB}}^{\mathrm{F}} \mathrm{P}_{\mathrm{AB}}^{\mathrm{F}}}_{\mathrm{i}=\mathrm{B}} \underbrace{\mathrm{P}_{\mathrm{CB}}^{\mathrm{F}} \mathrm{P}_{\mathrm{AC}}^{\mathrm{F}}}_{\mathrm{i}=\mathrm{C}}]^{1 / 3} \text { reduces to } \mathrm{P}_{\mathrm{AB}}^{\mathrm{EKS}}=\sqrt[3]{\left(\mathrm{P}_{\mathrm{AB}}^{\mathrm{F}}\right)^{2} \mathrm{P}_{\mathrm{AC}}^{\mathrm{F}} \mathrm{P}_{\mathrm{CB}}^{\mathrm{F}}}
$$

using identity and time reversibility of Fisher-indices. Analogously the two remaining parities

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{AC}}^{\mathrm{EKS}}=\left[\left(\mathrm{P}_{\mathrm{AC}}^{\mathrm{F}} \mathrm{P}_{\mathrm{AA}}^{\mathrm{F}}\right)\left(\mathrm{P}_{\mathrm{BC}}^{\mathrm{F}} \mathrm{P}_{\mathrm{AB}}^{\mathrm{F}}\right)\left(\mathrm{P}_{\mathrm{CC}}^{\mathrm{F}} \mathrm{P}_{\mathrm{AC}}^{\mathrm{F}}\right)\right]^{1 / 3}=\sqrt[3]{\left(\mathrm{P}_{\mathrm{AC}}^{\mathrm{F}}\right)^{2} \mathrm{P}_{\mathrm{AB}}^{\mathrm{F}} \mathrm{P}_{\mathrm{BC}}^{\mathrm{F}}} \\
& \mathrm{P}_{\mathrm{BC}}^{\mathrm{EKS}}=\left[\left(\mathrm{P}_{\mathrm{AC}}^{\mathrm{F}} \mathrm{P}_{\mathrm{BA}}^{\mathrm{F}}\right)\left(\mathrm{P}_{\mathrm{BC}}^{\mathrm{F}} \mathrm{P}_{\mathrm{BB}}^{\mathrm{F}}\right)\left(\mathrm{P}_{\mathrm{CC}}^{\mathrm{F}} \mathrm{P}_{\mathrm{BC}}^{\mathrm{F}}\right)\right]^{1 / 3}=\sqrt[3]{\left(\mathrm{P}_{\mathrm{BC}}^{\mathrm{F}}\right)^{2} \mathrm{P}_{\mathrm{BA}}^{\mathrm{F}} \mathrm{P}_{\mathrm{AC}}^{\mathrm{F}}} .
\end{aligned}
$$

EKS-parities pass the time reversal test, because interchanging of A and B in eq. 8.4.1 leads to

$$
\begin{equation*}
\mathrm{P}_{\mathrm{BA}}^{\mathrm{EKS}}=\left[\prod_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{P}_{\mathrm{iA}}^{\mathrm{F}} \mathrm{P}_{\mathrm{Bi}}^{\mathrm{F}}\right]^{1 / \mathrm{m}}=\left[\prod_{\mathrm{i}=1}^{\mathrm{m}} \frac{1}{\mathrm{P}_{\mathrm{iB}}^{\mathrm{F}}} \frac{1}{\mathrm{P}_{\mathrm{Ai}}^{\mathrm{F}}}\right]^{1 / \mathrm{m}}=\frac{1}{\mathrm{P}_{\mathrm{AB}}^{\mathrm{EKS}}}, \tag{8.4.2}
\end{equation*}
$$

using the country reversibility of the Fisher formula $\left(\mathrm{P}_{\mathrm{iA}}=1 / \mathrm{P}_{\mathrm{A} i}\right)$. Also transitivity holds

[^6]\[

$$
\begin{equation*}
\mathrm{P}_{\mathrm{AC}}^{\mathrm{EKS}}=\left[\prod_{\mathrm{i}}^{\mathrm{m}} \mathrm{P}_{\mathrm{iC}}^{\mathrm{F}} \mathrm{P}_{\mathrm{Ai}}^{\mathrm{F}}\right]^{1 / \mathrm{m}}=\left[\prod_{\mathrm{i}}^{\mathrm{m}} \mathrm{P}_{\mathrm{iB}}^{\mathrm{F}} \mathrm{P}_{\mathrm{Ai}}^{\mathrm{F}}\right]^{1 / \mathrm{m}}\left[\prod_{\mathrm{i}}^{\mathrm{m}} \mathrm{P}_{\mathrm{iC}}^{\mathrm{F}} \mathrm{P}_{\mathrm{Bi}}^{\mathrm{F}}\right]^{1 / \mathrm{m}}=\mathrm{P}_{\mathrm{AB}}^{\mathrm{EKS}} \mathrm{P}_{\mathrm{BC}}^{\mathrm{EKS}}, \tag{8.4.3}
\end{equation*}
$$

\]

The EKS parity can be interpreted as geometric mean of all indirect comparisons between A and B through all possible link countries $\mathrm{i}=1, \ldots, \mathrm{~m}$ (including A and B as link countries).

$$
P_{A B}^{\mathrm{EKS}}=[\underbrace{\mathrm{P}_{\mathrm{AA}}^{\mathrm{F}} \mathrm{P}_{\mathrm{AB}}^{\mathrm{F}}}_{\text {link }} \underbrace{\mathrm{P}_{\mathrm{AB}}^{\mathrm{F}} \mathrm{P}_{\mathrm{BB}}^{\mathrm{F}}}_{\text {link } \mathrm{B}} \underbrace{\mathrm{P}_{\mathrm{AC}}^{\mathrm{F}} \mathrm{P}_{\mathrm{CB}}^{\mathrm{F}}}_{\text {link } \mathrm{C}}]^{1 / 3} \text { since } \prod \mathrm{P}_{\mathrm{iB}}^{\mathrm{F}} \prod \mathrm{P}_{\mathrm{iB}}^{\mathrm{F}}=1
$$

This can easily be verified using the equations for the three country case
$\mathrm{P}_{\mathrm{AC}}^{\mathrm{EKS}}=\sqrt[3]{\left(\mathrm{P}_{\mathrm{AC}}^{\mathrm{F}}\right)^{2} \mathrm{P}_{\mathrm{AB}}^{\mathrm{F}} \mathrm{P}_{\mathrm{BC}}^{\mathrm{F}}}=\mathrm{P}_{\mathrm{AB}}^{\mathrm{EKS}} \mathrm{P}_{\mathrm{BC}}^{\mathrm{EKS}}=\sqrt[3]{\left(\mathrm{P}_{\mathrm{AB}}^{\mathrm{F}}\right)^{2} \mathrm{P}_{\mathrm{AC}}^{\mathrm{F}} \mathrm{P}_{\mathrm{CB}}^{\mathrm{F}}} \sqrt[3]{\left(\mathrm{P}_{\mathrm{BC}}^{\mathrm{F}}\right)^{2} \mathrm{P}_{\mathrm{BA}}^{\mathrm{F}} \mathrm{P}_{\mathrm{AC}}^{\mathrm{F}}}$ The RHS of this eq. of course is $\sqrt[3]{\left(\mathrm{P}_{\mathrm{AB}}^{\mathrm{F}}\right)^{2} \mathrm{P}_{\mathrm{AC}}^{\mathrm{F}} \frac{1}{\mathrm{P}_{\mathrm{BC}}^{\mathrm{F}}}\left(\mathrm{P}_{\mathrm{BC}}^{\mathrm{F}}\right)^{2} \frac{1}{\mathrm{P}_{\mathrm{AB}}^{\mathrm{F}}} \mathrm{P}_{\mathrm{AC}}^{\mathrm{F}}}$ which is in fact $\mathrm{P}_{\mathrm{AC}}^{\mathrm{EKS}}$.
EKS parities also pass the factor reversal test (see below). ${ }^{77}$

Derivation of $P^{E K S}$

1. by generalizing the Fisher formula

Consider a single parity between any two countries i and $j P_{i j}=P_{j} / P_{i}$ such that $P_{i j}^{L} \frac{P_{i}}{P_{j}}=\frac{P_{j}}{P_{i}} P_{j i}^{L}=\frac{P_{j}}{P_{i}} \cdot \frac{1}{P_{i j}^{P}}$ solving for $P_{i j}$ gives $\left(P_{j} / P_{i}\right)^{2}=P_{i j}^{L} P_{i j}^{P}=\left(P_{i j}^{F}\right)^{2}$
A "natural" generalization using normalized country weighs $f_{i}=g_{i} / \Sigma g_{i}\left(\Sigma f_{i}=1\right)$ is
(8.4.5) $\quad \prod_{\mathrm{i}}\left[\mathrm{P}_{\mathrm{ij}}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{i}} / \mathrm{P}_{\mathrm{j}}\right)\right]^{\mathrm{T}_{\mathrm{i}}}=\prod_{\mathrm{i}}\left[\mathrm{P}_{\mathrm{ji}}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{j}} / \mathrm{P}_{\mathrm{i}}\right)\right]^{\mathrm{F}_{\mathrm{i}}}$ (for $\left.\mathrm{i}=1, \ldots, \mathrm{~m}\right)$ leading to

$$
\begin{equation*}
P_{\mathrm{j}} / \mathrm{P}_{\mathrm{i}}=\prod_{\mathrm{k}}\left(\mathrm{P}_{\mathrm{kj}}^{\mathrm{F}} \mathrm{~F}_{\mathrm{ik}}^{\mathrm{F}}\right)^{\mathrm{t}_{\mathrm{k}}}=\mathrm{P}_{\mathrm{ij}}^{\mathrm{GEKS}} \tag{8.4.6}
\end{equation*}
$$

which is the generalized EKS-parity (or GEKS) in the unweighted case of $f_{k}=1 / \mathrm{m}$ we get the "normal" EKS solution of eq. 8.4.1.
To see this consider first the situation with j fixed and i taking on all values $1,2, \ldots, \mathrm{~m}$, hence $\left[\mathrm{P}_{1 \mathrm{j}}^{\mathrm{L}}\left(\mathrm{P}_{1} / \mathrm{P}_{\mathrm{j}}\right)\right]^{\mathrm{f}_{1}}\left[\mathrm{P}_{2 \mathrm{j}}^{\mathrm{L}}\left(\mathrm{P}_{2} / \mathrm{P}_{\mathrm{j}}\right)\right]^{\mathrm{t}_{2}} \ldots\left[\mathrm{P}_{\mathrm{mj}}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{m}} / \mathrm{P}_{\mathrm{j}}\right)\right]^{\mathrm{t}_{\mathrm{m}}}=\left[\mathrm{P}_{\mathrm{j} 1}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{j}} / \mathrm{P}_{1}\right)\right]^{\mathrm{f}_{\mathrm{f}}}\left[\mathrm{P}_{\mathrm{j} 2}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{j}} / \mathrm{P}_{2}\right)\right]^{\mathrm{t}_{2}} \ldots\left[\mathrm{P}_{\mathrm{j} m}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{j}} / \mathrm{P}_{\mathrm{m}}\right)\right]^{\mathrm{f}_{\mathrm{m}}}$ yielding
(8.4.7) $\quad\left(P_{1 j}^{\mathrm{F}}\right)^{\mathrm{f}_{1}}\left(\mathrm{P}_{2 \mathrm{j}}^{\mathrm{F}}\right)^{\mathrm{f}_{2}} \ldots\left(\mathrm{P}_{\mathrm{mj}}^{\mathrm{F}}\right)^{\mathrm{f}_{\mathrm{m}}}=\mathrm{P}_{\mathrm{j}} / \mathrm{P}_{1}^{\mathrm{f}_{1}} \mathrm{P}_{2}^{\mathrm{f}_{2}} \ldots \mathrm{P}_{\mathrm{m}}{ }^{\mathrm{f}_{\mathrm{m}}}$. Now consider eq. 5 if i is fixed $\left[\mathrm{P}_{\mathrm{i} 1}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{i}} / \mathrm{P}_{1}\right)\right]^{\mathrm{t}_{1}}\left[\mathrm{P}_{\mathrm{i} 2}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{i}} / \mathrm{P}_{2}\right)\right]^{\mathrm{f}_{2}} \ldots\left[\mathrm{P}_{\mathrm{im}}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{i}} / \mathrm{P}_{\mathrm{m}}\right)\right]^{\mathrm{f}_{\mathrm{m}}}=\left[\mathrm{P}_{1 \mathrm{i}}^{\mathrm{L}}\left(\mathrm{P}_{1} / \mathrm{P}_{\mathrm{i}}\right)\right]^{\mathrm{t}_{1}}\left[\mathrm{P}_{2 \mathrm{i}}^{\mathrm{L}}\left(\mathrm{P}_{2} / \mathrm{P}_{\mathrm{i}}\right)\right]^{\mathrm{f}_{2}} \ldots\left[\mathrm{P}_{\mathrm{im}}^{\mathrm{L}}\left(\mathrm{P}_{\mathrm{m}} / \mathrm{P}_{\mathrm{i}}\right)\right]^{\mathrm{t}_{\mathrm{m}}}$ giving

$$
\begin{align*}
& \left(P_{i 1}^{\mathrm{F}}\right)^{\mathrm{f}_{1}}\left(\mathrm{P}_{\mathrm{i} 2}^{\mathrm{F}}\right)^{\mathrm{f}_{2}} \ldots\left(\mathrm{P}_{\mathrm{im}}^{\mathrm{F}}\right)^{\mathrm{f}_{\mathrm{m}}}=\mathrm{P}_{1}^{\mathrm{f}_{1}} \mathrm{P}_{2}^{\mathrm{f}_{2}} \ldots \mathrm{P}_{\mathrm{m}}{ }^{\mathrm{f}_{\mathrm{m}}} / \mathrm{P}_{\mathrm{i}} \text {, upon multiplication of eqs. } 7 \text { with } 8 \text { we get } \tag{8.4.8}\\
& \left(P_{i 1}^{\mathrm{F}} \mathrm{P}_{1 \mathrm{j}}^{\mathrm{F}}\right)^{\mathrm{f}_{1}} \ldots\left(\mathrm{P}_{\mathrm{im}}^{\mathrm{F}} \mathrm{P}_{\mathrm{mj}}^{\mathrm{F}}\right)^{\mathrm{f}_{\mathrm{m}}}=\frac{P_{\mathrm{j}}}{\mathrm{P}_{\mathrm{i}}}=\mathrm{P}_{\mathrm{ij}}^{\mathrm{GEKS}} . \tag{8.4.6a}
\end{align*}
$$

EKS (and GEKS) parities pass the factor reversal test. Quantity indices can be obtained by interchanging prices and quantities in the price index formula (eq. 8.4.1a)

$$
\mathrm{Q}_{\mathrm{AB}}^{\mathrm{EKS}}=\sqrt[3]{\left(\mathrm{Q}_{\mathrm{AB}}^{\mathrm{F}}\right)^{2} \mathrm{Q}_{\mathrm{AC}}^{\mathrm{F}} \mathrm{Q}_{\mathrm{CB}}^{\mathrm{F}}} \rightarrow \mathrm{P}_{\mathrm{AB}}^{\mathrm{EKS}} \mathrm{Q}_{\mathrm{AB}}^{\mathrm{EKS}}=\sqrt[3]{\left(\frac{\sum \mathrm{p}_{\mathrm{B}} \mathrm{q}_{\mathrm{B}}}{\sum \mathrm{p}_{\mathrm{A}} \mathrm{q}_{\mathrm{A}}}\right)^{2} \frac{\sum \mathrm{p}_{\mathrm{C}} \mathrm{q}_{\mathrm{C}}}{\sum \mathrm{p}_{\mathrm{A}} \mathrm{q}_{\mathrm{A}}} \frac{\sum \mathrm{p}_{\mathrm{B}} \mathrm{q}_{\mathrm{B}}}{\sum \mathrm{p}_{\mathrm{C}} \mathrm{q}_{\mathrm{C}}}}=\frac{\sum \mathrm{p}_{\mathrm{B}} \mathrm{q}_{\mathrm{B}}}{\sum \mathrm{p}_{\mathrm{A}} \mathrm{q}_{\mathrm{A}}}
$$

[^7]
2. by minimizing a distance

The general distance minimization criterion reads as follows ${ }^{78}$

$$
\begin{equation*}
\min \Delta=\min \Delta\left(\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{m}}\right)=\min _{\mathrm{P}_{\mathrm{l}}, \ldots, \mathrm{P}_{\mathrm{m}}} \sum_{\mathrm{i}} \sum_{\mathrm{k}} \mathrm{~g}_{\mathrm{i}} \mathrm{~g}_{\mathrm{k}}\left[\ln \left(\mathrm{P}_{\mathrm{ik}}^{\mathrm{F}}\right)-\ln \left(\mathrm{P}_{\mathrm{k}} / \mathrm{P}_{\mathrm{i}}\right)\right]^{2} \tag{8.4.9}
\end{equation*}
$$

The function $\Delta=\mathrm{g}_{1} \mathrm{~g}_{2}\left\{\left(\ln \mathrm{P}_{12}^{\mathrm{F}}\right)^{2}-2 \ln \mathrm{P}_{12}^{\mathrm{F}}\left(\ln \mathrm{P}_{2}-\ln \mathrm{P}_{1}\right)+\left(\ln \mathrm{P}_{2}-\ln \mathrm{P}_{1}\right)^{2}\right\}+$

$$
\mathrm{g}_{1} \mathrm{~g}_{3}\left\{\left(\ln \mathrm{P}_{13}^{\mathrm{F}}\right)^{2}-2 \ln \mathrm{P}_{13}^{\mathrm{F}}\left(\ln \mathrm{P}_{3}-\ln \mathrm{P}_{1}\right)+\left(\ln \mathrm{P}_{3}-\ln \mathrm{P}_{1}\right)^{2}\right\}+\ldots
$$

has to be differentiated with respect to $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots$, and set equal to zero ${ }^{79}$. Thus $\frac{\partial \Delta}{\partial \mathrm{P}_{1}}=0$ is leading after division by $2 g_{1} / P_{1}$ and using $\ln \left(P_{11}^{\mathrm{F}}\right)=\ln (1)=0$ to $g_{2}\left(\ln \frac{\mathrm{P}_{12}^{\mathrm{F}}}{\mathrm{P}_{21}^{\mathrm{F}}}\right)+\mathrm{g}_{3}\left(\ln \frac{\mathrm{P}_{13}^{\mathrm{F}}}{\mathrm{P}_{31}^{\mathrm{F}}}\right)+\ldots+$ $2 \ln \mathrm{P}_{1}\left(\mathrm{~g}_{2}+\mathrm{g}_{3}+\ldots\right)=2\left(\mathrm{~g}_{2} \ln \mathrm{P}_{2}+\mathrm{g}_{3} \ln \mathrm{P}_{3}+\ldots\right)$ or simply
(8.4.10) $\quad \ln \mathrm{P}_{1}=\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{g}_{\mathrm{i}} \ln \mathrm{P}_{\mathrm{i}}-\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{g}_{\mathrm{i}} \ln \left(\mathrm{P}_{\mathrm{li}}^{\mathrm{F}}\right)$. In a similar vein examining $\frac{\partial \Delta}{\partial \mathrm{P}_{2}}=0$ leads to
(8.4.11) $\quad \ln \mathrm{P}_{2}=\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{g}_{\mathrm{i}} \ln \mathrm{P}_{\mathrm{i}}-\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{g}_{\mathrm{i}} \ln \left(\mathrm{P}_{2 \mathrm{i}}^{\mathrm{F}}\right)$. Subtraction of 10 from 11 yields

$$
\begin{equation*}
P_{12}^{\mathrm{GEKS}}=\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\frac{\prod_{i}^{m}\left(\mathrm{P}_{\mathrm{i} 2}^{\mathrm{F}}\right)^{g_{i}}}{\prod_{\mathrm{i}}^{\mathrm{m}}\left(\mathrm{P}_{\mathrm{i} 1}^{\mathrm{F}}\right)^{\mathrm{g}_{\mathrm{i}}}}=\prod_{\mathrm{i}=1}^{\mathrm{m}}\left(\frac{\mathrm{P}_{\mathrm{i} 2}^{\mathrm{F}}}{\mathrm{P}_{\mathrm{il}}^{\mathrm{F}}}\right)^{\mathrm{g}_{\mathrm{i}}} \tag{8.4.1a}
\end{equation*}
$$

b) The Caves-Christensen-Diewert (CCD) - method

As Fisher's index formula so is the Törnqvist index country reversible but not transitive, i.e. the product $P_{A B}^{T} P_{B C}^{T}=\prod_{\mathrm{k}=1}^{\mathrm{n}}\left(\frac{\mathrm{p}_{\mathrm{kB}}}{\mathrm{p}_{\mathrm{kA}}}\right)^{\overline{\mathrm{w}}_{\mathrm{AB}}} \prod_{\mathrm{k}=1}^{\mathrm{n}}\left(\frac{\mathrm{p}_{\mathrm{kC}}}{\mathrm{p}_{\mathrm{kB}}}\right)^{\overline{\mathrm{w}}_{\mathrm{BC}}}$ where $\overline{\mathrm{w}}_{\mathrm{AB}}=\left(\mathrm{w}_{\mathrm{kA}}+\mathrm{w}_{\mathrm{kB}}\right) / 2$, and $\overline{\mathrm{w}}_{\mathrm{BC}}$, $\overline{\mathrm{w}}_{\mathrm{AC}}$ correspondingly not necessarily equals $\mathrm{P}_{\mathrm{AC}}^{\mathrm{T}}=\prod_{\mathrm{k}=1}^{\mathrm{n}}\left(\frac{\mathrm{p}_{\mathrm{kC}}}{\mathrm{p}_{\mathrm{kA}}}\right)^{\overline{\mathrm{w}}_{\mathrm{AC}}}$ unless $\overline{\mathrm{w}}_{\mathrm{AB}}=\overline{\mathrm{w}}_{\mathrm{BC}}=\overline{\mathrm{w}}_{\mathrm{AC}}$.
A simple method to guarantee transitivity is to take an average of any two-countries-comparison as done in the Caves-Christensen-Diewert (CCD) index, recommended for international price comparisons. In analogy to the EKS system of parities

$$
\begin{align*}
& \mathrm{P}_{\mathrm{AB}}^{\mathrm{EKS}}=\left(\frac{\prod_{\mathrm{Ai}} \mathrm{P}_{\mathrm{A}}^{\mathrm{F}}}{\prod_{\mathrm{Bi}}^{\mathrm{F}}}\right)^{\mathrm{i} / \mathrm{m}}=\left[\prod_{\mathrm{i}}^{\mathrm{m}} \frac{\mathrm{P}_{\mathrm{Ai}}^{\mathrm{F}}}{\mathrm{P}_{\mathrm{Bi}}^{\mathrm{F}}}\right]^{1 / \mathrm{m}} \text { the CCD index is defined as } \tag{8.4.1}\\
& \mathrm{P}_{\mathrm{AB}}^{\mathrm{CCD}}=\left(\frac{\prod_{i=1}^{\mathrm{F}}\left(\mathrm{P}_{\mathrm{Ai}}^{\mathrm{T}}\right)}{\prod_{\mathrm{Bi}}^{\mathrm{m}}\left(\mathrm{P}^{\mathrm{T}}\right)}\right)^{1 / \mathrm{m}}=\left(\prod_{\mathrm{i}=1}^{\mathrm{m}} \frac{\mathrm{P}_{\mathrm{Ai}}^{\mathrm{T}}}{\mathrm{P}_{\mathrm{Bi}}^{\mathrm{T}}}\right)^{1 / \mathrm{m}} \text { or equivalently } \tag{8.4.12}
\end{align*}
$$

[^8](8.4.12a) $\quad \ln \left(\mathrm{P}_{A B}^{C C D}\right)=\frac{1}{m} \sum_{\mathrm{i}=1}^{\mathrm{m}} \ln \left(\mathrm{P}_{A \mathrm{i}}^{\mathrm{T}}\right)-\frac{1}{\mathrm{~m}} \sum_{\mathrm{i}=1}^{\mathrm{m}} \ln \left(\mathrm{P}_{\mathrm{Bi}}^{\mathrm{T}}\right)$. Obviously $\mathrm{P}^{\mathrm{CCD}}$ in fact is transitive since $P_{A C}^{C C D}=\left(\prod_{i=1}^{m} \frac{P_{A i}^{T}}{P_{C i}^{T}}\right)^{1 / m}=\left(\prod_{i=1}^{m} \frac{P_{A i}^{T}}{P_{B i}^{T}}\right)^{1 / m}\left(\prod_{i=1}^{m} \frac{P_{B i}^{T}}{P_{C i}^{T}}\right)^{1 / m}=P_{A B}^{C C D} P_{B C}^{C C D}$.
To demonstrate this in the $\mathrm{m}=3$ country case examine the matrix \mathbf{T} of logarithms of parities

$\mathbf{T}=\left[\begin{array}{ccc}0 & \ln \left(\mathrm{P}_{\mathrm{AB}}^{\mathrm{T}}\right) & \ln \left(\mathrm{P}_{\mathrm{AC}}^{\mathrm{T}}\right) \\ -\ln \left(\mathrm{P}_{\mathrm{AB}}^{\mathrm{T}}\right) & 0 & \ln \left(\mathrm{P}_{\mathrm{BC}}^{\mathrm{T}}\right) \\ -\ln \left(\mathrm{P}_{\mathrm{AC}}^{\mathrm{T}}\right) & -\ln \left(\mathrm{P}_{\mathrm{BC}}^{\mathrm{T}}\right) & 0\end{array}\right]$ then eq. 12a applied to $\ln \left(\mathrm{P}_{\mathrm{AC}}^{\mathrm{CCD}}\right)$ gives $3 \ln \left(\mathrm{P}_{\mathrm{AC}}^{\mathrm{CCD}}\right)=\sum_{\mathrm{i}=1}^{\mathrm{m}} \ln \left(\mathrm{P}_{\mathrm{Ai}}^{\mathrm{T}}\right)-\sum_{\mathrm{i}=1}^{\mathrm{m}} \ln \left(\mathrm{P}_{\mathrm{Ci}}^{\mathrm{T}}\right)=\ln \left(\mathrm{P}_{\mathrm{AB}}^{\mathrm{T}}\right)+\ln \left(\mathrm{P}_{\mathrm{AC}}^{\mathrm{T}}\right)-\left(-\ln \left(\mathrm{P}_{\mathrm{AC}}^{\mathrm{T}}\right)-\ln \left(\mathrm{P}_{\mathrm{BC}}^{\mathrm{T}}\right)\right)$ or $\ln \left(\mathrm{P}_{\mathrm{AC}}^{\mathrm{CCD}}\right)=$ $\frac{2}{3} \ln \left(\mathrm{P}_{\mathrm{AC}}^{\mathrm{T}}\right)-\frac{1}{3}\left[-\ln \left(\mathrm{P}_{\mathrm{BC}}^{\mathrm{T}}\right)-\ln \left(\mathrm{P}_{\mathrm{AB}}^{\mathrm{T}}\right)\right]$ that is $\mathrm{P}_{\mathrm{AC}}^{\mathrm{CCD}}=\sqrt[3]{\left(\mathrm{P}_{\mathrm{AC}}^{\mathrm{T}}\right)^{2} \mathrm{P}_{\mathrm{AB}}^{\mathrm{T}} \mathrm{P}_{\mathrm{BC}}^{\mathrm{T}}}$ just like eq. 8.2.5a.

Literature

Two books of the author

Peter von der Lippe Chain Indices A Study in Price Index Theory Volume 16 of the Publication Series Spectrum of Federal Statistics	Peter von der Lippe Index Theory and Price Statistics
published by the German Statistical Office Wiesbaden, Germany 2001, 291 pages Vol. 16 of the publication series "Spectrum of Federal Statistics, order Number 1030516 ISBN 3-38246-0638-0 (Metzler-Poeschel publisher Stuttgart 2001)	Frankfurt/M 2007 Publisher Peter Lang ISBN 978-3-631-56317-5 572 pages www.peterlang.de
More information http://www.von-der-lippe.org/publikationen.php	

[^0]: ${ }^{70}$ different inflation rates α_{i} but equal quantity growth rates β leave the quantity shares unchanged.

[^1]: 71 which therefore may also be called "generalizations of binary comparisons" (Balk).

[^2]: 72 This applies to the EKS method or variants of it, as for example the CCD-method using P^{T} instead of P^{F}.

[^3]: ${ }^{73}$ Unfortunately there is always some confusion because some writers use converters, c_{i} as above, others prefer to express the equations in terms of exchange rates $e_{i}=1 / c_{i}$.

[^4]: ${ }^{74}$ In the left case we have for example $\mathrm{D}(\mathrm{A}, \mathrm{B})=0.08, \mathrm{D}(\mathrm{B}, \mathrm{D})=0.07$ etc.
 75 The total distance in the case of the above mentioned string A-B-C-D-E for example amounts to $0.08+0.11+$ $0.10+0.12=0.41$, and is thus much greater than 0.37 .

[^5]: ${ }^{76}$ For instance Fisher indices for all possible pairs of countries (full scale data) or for only some of the countrypairs (limited scale). The EKS-method then is applicable, whilst the GK-method is not. On the other hand meth-

[^6]: ods utilizing price-index material only (like EKS) involve a somewhat nebulous concept of quantity and there are difficulties in allowing for a different size of the countries to be compared as well as for different quantities of commodities.

[^7]: ${ }^{77}$ This can no longer be assumed if P^{F} is replaced by another index function such as Törnquist P^{T} (in the CCD method, see below) or $\mathrm{P}^{S \mathrm{~T}}$ in Banerjee's factorial approach functions.

[^8]: 78 The logarithmic distance functions Δ is introduced in order to make the resulting multilateral transitive indices deviate the least from the non-transitive binary indices.
 ${ }^{79}$ I saw no proof spelled out in detail in the relevant literature. So I demonstrated the details of the proof in my book "Index Theory and Price Statistics".

