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Covariances and relationships between price indices
Notes on a theorem of Ladislaus von Bortkiewicz on linear index functions

Peter von der Lippe

The note examines a generalization of a theorem of Bortkiewicz which relates the differ-
ence between a Paasche and a Laspeyres price index to a covariance between price and
quantity relatives. The generalized theorem is used to demonstrate a number of inter-
esting special applications. It turns out that some known relationships between two in-
dex functions can be expressed more elegantly. In other cases where not much is known
yet about how the two functions are related to one another, we could establish an inter-
esting equation on the basis of this theorem. This demonstrates the remarkable flexibil-
ity and usefulness of the generalized Bortkiewicz - theorem.

1. Generalization of a theorem for additive indices of Ladislaus von Bortkiewicz

It is well known that Ladislaus von Bortkiewicz (1868 - 1931) found that the Paasche
price index (P},) is related to the Laspeyres price index (Pg) as follows

o Por Lo
o Poi Q5t

where Qk, denotes the Laspeyres quantity index and cov is the (weighted) covariance
between price and quantity relatives given by

(2) COVIE(&—P&j[ZIt Q()tjw = Ot tQOt Q(Iit(P(i_P(h):P(?t(Qgt_Q(lit)J

i=1 i0 i0
with base period expenditure weights Wiy = PioQio/> Piodio ©f the n commodities (i =
1, .., n). As P} and Q, is the arithmetic mean of price and quantity relatives respectively

the "centered" covariance —— can also be written as follows
P Q
ot~ot

- cov . . . /q:
3) cov = o =1,C,C, = Zi[pn/ Pio —1][ an/ dio —1Jwi0.

L
POt 0t

Using the correlation coefficient rpq, and the coefficients of variation Cp, Cq the theorem
of Bortkiewicz can be written as

Pr  V, —
(@) = =1+r,,C,C, =1+cov.

POt OtQOt

Interestingly this well known relationship between a Paasche and a Laspeyres price in-
dex turns out to be only a special case of a more general law of the ratio of two additive
(/inear) indices X1 and Xo respectively (see fig. 1).

An index function P(po,qo,p.q:) is said to be linear when it can be expressed as a ratio of
vector products as for example

Y. Ptdo Pt% Pit Pioio
pL = pL = =7ti0 _and thus also as Pk fit Diodio
ot (Po, G0, P, qt) YPodo  Phdo’ 0t = &y pla)
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For example the function P&} = P2(po, 90, Pv, Gt) = H( )Zpoqo (which may be called the

log -Laspeyres price index) is not a linear index.

Figure 1: Generalization of Bortkiewicz's theorem

(law of the ratio of two additive indices)
Taken from v. d. Lippe (2007), p. 196

first additive index Xo second additive index X
X, = ZXtYO X, = ZXth
t
ZXOYO Z XYt

weighted (weights w, =x,y, /2 X,¥o
throughout) arithmetic mean of the rela-
tives

ZYtXO *)

xt/X0: X=X, yi/yo: Y = S
0Xo

variances (weights wo) of the relatives

2 2
X — —
Xt/X0: S, =Z(X—‘—Xj Wy ye/yo: s —Z[ﬁ— j Wy

Yo

the covariance is given by

(2a) cov= SXY=Z[% XJ(L—?J %;{tzt -X-Y=Y(X,-X,)

and the ratio of two additive indices

S
(1a) £—1+r C.C —1+_Xy_ where 1, = —"- ,CX=S:x and C - and
X X-Y X Y

Xy X7y
0 ssy

s
(1b) TCov(xy) = rygCiCy = % is the centered covariance

*) The formula of Y =Y, can be derived from X =X, by interchanging x and y. In the
same way we can derive Y1 from Xj, so that X1/Xo = Y1/Yo

Now in view of fig. 1 we may substitute x- and y-vectors by prices and quantities as fol-
lows

Xo=X X1 X0 Xt yo yt Wio Y

01

Pg“t P(ft pio pit qio qit pioqio/Zpiogio Q]6t

We then get according to fig. 1 for sxy exactly the covariance cov as defined in (2) that is
the covariance between price and quantity relatives weighted with base period expendi-
ture shares wio = pioQio/Zpioqio-

An alternative to (2) is (Siegel 1941a; 345, referring to Staehle for this result)
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* . plO 1 qu 1 pltqlt 1 1 1
(2a) cov = Z[— ][ —] = , so that
i=l plt P()P; qlt QOt Zpltqlt QOt P()Lt P(i

P *
Py, cov

Gy D A
R AN

Another example is! a comparison between the Laspeyres and Walsh price index (the

latter is defined as Phy = 2 P/ Ah \/@) where the elements xo, xt, yo and y: may be defined as
9ot
follows:
- Xo=X Xt X0 Xt Vo Vt Y
L
Pk pY Po P do Jaod: | Xpovaed. /2 pedo

. X
The relevant variances then are — = P
X p
0 0

relative to the mean X = X, = P;, and the vari-

ance of the Yoo [de measured around Y = Z e _Poo so that the covariance then

yo Vo 9o Pl

is given by cov=zn:(&—P j{\/a _J 21:30(10 Zzpf 9% _ % and
i=1 \ Po Po9o Po4o

Zpt\/%%_ X Po 0 _ @
2. Pto Y Pov/ 904t Pot

Thus the extent to which Walsh's index, Py} is greater or smaller than Laspeyres' index,

P and [t
Po do

cov(x,y) =

P& depends on the covariance between . A consequence of this result is

f P and e
Py 9o

p al‘ld qt
Po 9

P, <Py and if P;; > P, thenalso P, > P, .

for example: i are negatively correlated such that P;; > P, the same will be

true for —- such that P; > P, . Thus not surprisingly we get: if P& < Pf then

2. Special cases of the general theorem

In order to find relationships between a weighted and an unweighted index number it is
advisable to set one or two x or y variables equal to unity. It then turns out that the for-
mulas given in fig. 1 are generally valid. For example upon setting xo = yo = 1 and there-
Z Xty

by wo = 1/n we get (as we do in general) X = Xo and X; = such that with xo = yo =

1 we end up with

(5) cov:sxy:z(ﬁ XJLL—S_{jW():%Z(Xt—Yth—?)

Xy Yo

1 We henceforth leave out the subscript i to denote commodities over which the summation takes place.
See also v. d. Lippe (2007), p. 195 for this particular example.
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_M_g.?z?(xt_xo)

> xy,

Hence the "normal” formula for the (unweighted) covariance between x and y relatives
is simply just a special case of Bortkiewicz's theorem. Using X = Xo we get

Table 1: Some special variants of the generalized theorem of L. von Bortkiewicz

on two additive indices
Taken from v. d. Lippe (2007), p. 196

cov—s, - z&_zj(h_vjwo _Y(x, -x,)

0 Yo
Model | assumptions Xo=X X Y=Y, Wo
G general X XtYo AL 2 Xo¥t XoYo
X XoYo X XoVt Y XoYo L XoYo
_ 2 X0 2 XYt 2Vt Yo
A X0 = 1 _ Z
%Yo XYt %Yo Yo
B Yo DYt 2 XoYt *o¥o
B Xt = 1 Z X
X XoYo X XoVt % XoYo Yo
> Xt X XeYt X XoVt Xo_
C yo=1 S Y x
2. Xo X Xo¥t X Xo 0
X XtYo 2 Xt % Xo XoYo
D yt =1 Z X
> XoYo X Xo % XoYo Yo
XXt 2 XYt XYt 1
E Xo=Vyo=1 = = -
0= Yo n 2Vt n n
F == 1 Yo n 2 Xo XoYo
t= Y XoYo 2 Xo Y. XoYo X XoYo

Strictly speaking the table is superfluous because all special cases (A through F) can easily be derived
from G by setting certain x or y terms equal to unity. The table suggests that in many cases a choice among
various models can be made when two indices are to be compared.

3. Some examples

a) General theorem (model G)
In order to compare Pg: to the Marshall-Edgeworth index

(6) PME = 2Pt %(QO +qv) ) 2 pe(qo + qr)
" ¥po ‘2(90 +9t) X po(do +av)
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we proceed as indicated in row 3 of table 2. The index PME can also be written as

L
P

Q¢ pP
Tl Py; so that

weighted arithmetic mean of P} and P§, viz. PME = 1+Q0t

PHE _ 14Qf _ 1+AQf; _ Q6 _ Ph: : : L
PL = TiQl — 1Qk where A = o = L Put otherwise P& > P§; (that is A < 1) implies
Pgi > PYiE.

Zpo(dotay) _ y do*dt Podo

=1+ QL. such
Y Podo do XPodo QOt

In the case of example 3 (row 3 of table 2) Y =

that the relevant covariance is given by

cov= ) (ﬁ _ P&t) (quJ:)Qt _ ?) Podo _ (% _ POLt) ( QOt) Podo

Y Podo Zpo%

This means that for comparing P to P{E and P& to P the result depends on the same
covariance (as defined in eq. 2). It is again this covariance which also is involved in the

. . . . Py PY
comparison of P}; (or P§,) to Fisher's ideal index P§ = /P&Popt because P—Ez = ’Pgi and

0
Phe _ 4/ [P
PO 1/ PGt
Finally a simple function of this covariance is also in play when Pg; is compared to the

following index?

(6a) PRR*= _(POLt + P§).

Por - € P L POt DR+ _ pL
As L= (1 + ) it follows: if Py; < Py; then also o < 1 and therefore Py;™" < Py;.
ot Ot ot
Table 2: Some examples for the general theorem
Xo =X Xt X0 Xt Yo Vi Y wo

text

3 P PME po pt qo qo + qt Sjg 03: Pogo/Zpoqo
text text be-

CLOR | R | po | pe | Ao | (ba/z | ST | seetextbe

The second example here (row 4) does not appear to be intuitively appealing because it
may be difficult to find a meaningful interpretation for the "quantity relatives"
>(qo + qt)/+y/d0qt (which are ratios of an arithmetic and a geometric mean - over two
periods - of quantities for each commodity i = 1, ..., n and therefore > 1), nor appears

1
< _ 72Po-(do+qp) . .
Y =222 to make much sense. However, the weights w, = oY 120t
X Poy/doqt

> Pov 04t

be viewed as expenditure shares for some fictitious (average) quantity.

may clearly

b) xo or x: = 0 (model A and B respectively)

As an alternative to example 1 we may compare Pj; to P&, also as indicated in ex. 5 in the
following table 3 where the critical covariance is

2 It is another index of Drobisch in addition to the index PPR which will be introduced shortly (eq. 7 be-
low). Drobisch mentioned this index in Drobisch (1871), p. 425. It may be noted in passing that in this
paper Drobisch was prepared to accept any kind of weighted arithmetic mean aP& + (1 — a)P§, not only
a = %. In the Anglo-American literature this index PPR* is also known as index of Sidgwick - Bowley
(Diewert (1997); p. 129).
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Pt L 1 gt Podo Vot L P L
cov = (——P)( 1)—=——P = Py, — Ps:.
Z Po Qot Jo X Podo Q%t ot ot ot

We get this also when we divide (2) by Q},

Table 3: Some examples for the model A (xo = 1)

Xo=X Xt X0 Xt Yo Vt Y Wo
5 Pot Pot 1 | p/po | poqo/Epoqo | Poqr/Zpoqr 1 | wo=yo
6a Pt Pt 1 pt 1/n qt/Zqe 1 Wo = Yo
6b Po Po 1 Po 1/n qo/2qo 1 Wo = Yo

A bit more difficult appears at first glance, however, the comparison between Dutot's
price index P and the following index of Drobisch (example 6)

X Peqe/2 qe Pt
7) PRl=e—— =
7 ot XPo90/290 Do

PDR*

1 . . .
By contrast to =3 (P& + P§) this index is much better known as an index suggested

by Drobisch. However; unfortunately PRR is often called "unit value index". It is simply a
ratio of two unit values p; and p,.3

As a rule these two quantity weighted averages of prices are different from the un-
weighted averages p; and p, in PQ = %Z pt/%z Po = Pt/Po - Hence comparing PR to POR
boils down to comparing two kinds of average prices. This may be done in two steps: the
first step (row 6a) results in the (numerator) covariance ¢, = p; — p; and the second
(row 6b) in the denominator covariance, which is c4 = py — pg so that we end up with
Pyt _ 1+c¢,/Pe

P2 1+cq/Po

(72)

In a similar manner CSW 1980 derived a ratio with different covariances in numerator
and denominator as an alternative to our eq. 8 (see below example 14).

¢) yo or y: = 0 (model C and D respectively)

We now make a comparison between P§ and PPR using the fact that both indices are
related to the value ratio (or value "index" Vot =Xptqt/Zpoqo) as follows

\' : o ,
e POR= Q—"t where QP is the quantity index of Dutot defined as Q5, = g—:t
0
e and P} can be written as P§ = V,/Q%, so that
PDR
our ratio X1/Xo now is —;- — Qe so that a comparison between P& and P2R amounts to a

Pl&t QR
comparison between QF, and Q), which is worked out as example 7.

We found in ex. 7 that PRR = P& if Q5. = Qb or equivalently

ZQtpt _ ZQt
(7b) QOt - Zq Pt QOt Zq

3 The problem is that unit values exist only for a group of homogeneous good. There is no "general" unit
value over all goods, for the simple reason that for such a large aggregate die sum of quantities (Xq: and
(2qo) is not defined.
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in which case the covariance vanishes. Given (7b) we see that in fact in the following

definitional equation for PQR = P} is trueéqopt
qtPt
DR _ XGtPt Xqr _ XdtPr X doPt : 2do _ XdoPt _ XdoPt _ pL
F N Y. dobo X do 2 doPo X dtPt using (7b) 24t 24Pt X doPo POt.
Table 4: Some examples for the model C (yo=1)
Xo = X Xt X0 Xt Yo Yyt Y Wo
2 Ptdo o
7 | Q |Qoe| @ | @ | 1| p Z;O = Z Py qo qo/Zqo
2 PoYo .
8 ot | Q6| 9 | a [ 1 | po Sae 2 pozqo Po | 9o/Zqo
2. PoYo ~
9% | Pp | P | po| p| 1| qo S s —Zqozp0 =qo | Po/Zpo
2. Podt
10 | P | P | po| pr | 1 | S a0 z qtz - Po/Zpo

* see also examples 11 and 12 respectively

Note that the terms under Y can be viewed as weighted means of prices or quantities, refer-
ring either to t or to 0.

It may also be interesting to compare POR to Pf; instead of P;. This means that we have

. P oDR Qot
to study the ratio —5-
PO o

which is done in example 8.

The examples 9 and 10 may also be written in analogy to model D (see next table 5).
This amounts to interchanging y: and yo and as a consequence interchanging of Xo and X:.
Also the weights wo and Y are affected when we move from model D to C.

Table 5: Some examples for the model D (y:=1)

Xo=X

Xt X0 Xt Yo Yt Y Wo
11 | pL pD 2 Po
ot ot po pt qo 1 S pods Pogo/Zpoqo
xp
12| PP PR po | p | a L5 Oq Poq:/Zpoqe
ot

The terms under Y can be viewed as weighted means of reciprocal quantities, 1/qo and 1/q respectively.

As to example 11 and 9 we find in CSW (1980), p. 19 the quite complicated formula (in
our notation)

L
Pot

D =
POt

1+ cov(pt, qo)
1 4 cov(po, qo)’

®
using the unweighted covariances cov(py, qo) = %Z(pt —p)(qo — Jo) and cov(po,qo)
defined analogously in which both averages, p and q are unweighted averages, while our

less complicated formulas only needs one? covariance (between p:/po and . base period
quantities qo) weighted, however. The covariance in example 9 is

4 with base period expenditure shares poqo/Zpoqo.
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G Z(E-P) (a0 -Taog) =

Po

8b)  p(R-py)(foplile) R

do do X Po/ X Podo

This shows that there may well exist a number of different formulas for the relationship
between the same two price indices. Again in the examples 10 and 12 the CSWD formula
for comparing Paasche and Dutot

P_(Ft _ 1+7cov(py,qy)
PL 1+ cov(po,qr)

)

based on two unweighted covariances (that is each product (x-x)(y-y) is multiplied by
1/n),while our result is given by either

(9a) > (g—; — PODt) ( - Y q: Zp;o) T example 10 or
P _ 1 1 Po ) Poqt
(Ob) 2 (po ) ( qat 2 dt Zpo) 2 Poqt in example 12

making use of one weighted covariance only. Note the striking resemblance between
(9a) and (8a) on the one hand and (9b) and (8b) on the other.

Pk,
We can also combine one of the formulas (8a) or (8b) to w1th one of the formulas

Pot P_Et
Pth PGt \/ POt

1980; 31 a quite complicated expression using unweighted covariances only, viz.

P
(9a) or (9b) for —°D‘ in order to measure — For this task we find in CSW

P_(;:t _ 1+ cov(p, q0) _ 1+ cov(p, qr)
Pa 1+ cov(po,do) 1+ cov(po,qe)

(99)

with four 1+cov terms involved, rather than only two. Note that the way how (9¢) is com-

posed of p and q terms bears some resemblance to Ph, = 20y 2Py,
Y Podg X Po¢

¢) xo =yo= 1, or x; = y: = 0 (model E and F respectively)

As an example (see row 13 in table 6 below) we compare the Dutot index PR = ggt with
the Carli index® given by
1 :
POt Pit
plO

For this reason we set xo = yo = 1, Xt = pt/po and y: = po/Zpo. The result is shown in
combination with some other comparisons in the following table 6.

Example 13 is particularly easy to understand. As usual X; = Xo holds when the covari-

1
ance vanishes. The relevant covariance here is cov = ;Z (p— - Poct) (;—; - ;) =
0 0

5 This index is also known as "Sauerbeck index". Laspeyres and some other authors in his days made ex-
tensively use of this formula (and also Sauerbeck's price statistics for British foreign trade). It was only in
the 20t century that it became generally known that the formula originated from Giancarlo Carli.
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l(POt Ps;). When all ratios me are equal, viz. Zp;)o = % then of course cov = 0 and
Pio i0
Pt Po_ bl
=)= T =) oo reduces to Pg.
Table 6: Some examples for the model E
(in all cases wo = 1/n)
Xo=X Xt X0 Xt Vo Yt Y

13* P& P2 1 pt/po 1 po/Zpo 1/n

14| Py P | 1 | py/po | 1 | poqo/Epoqo | 1/n

15 Py P | 1 | p/po | 1 | poq/Zpoq: | 1/n

* CSW (1980); p. 20 report the same formula

For CSW (1980), p. 27 there are good reasons to assume a negative correlation (be-
tween pt/po and po/Zpo) in the case of ex. 13, so for them PY < P§ should be fairly gen-
eral the case.

In a similar vein in example 14 P& reduces to PG when the covariance cov =

1 Pt _ pC Podo 1\ _ 1,51, pC : . ;-
nZ (po Py ) (—2 — n) = (Pot POt) vanishes, or put differently, when all base peri
od expenditure shares are equal (1/n)¢ in which case of course also Qk, = Q.

Model E may also be used to find some relationships with the unweighted harmonic
mean defined by (Pf)~! = Z Pio

Table 6 cont'd. (wo= 1/n)

Xo=X Xt X0 Xt Yo Vi Y
16 1/P§ 1/PR 1 | po/pt | 1 pt/Zpt 1/n=wpo
17 | 1/Pg 1/Pi | 1 | po/pe| 1 pido Zpqo/n
18 1/Pgt 1/Pg 1 | po/pt| 1 ptqe Zpqe/n
19 Pot Pot 1 | p/po| 1 | po/pe | PG=1/P}

In 16 we get X1/Xo = Pl /PR and the covariance expressed in full is

1 po 1\/pe 1\ 1/1 1 1/Pfl—PR
(10) covz—z o, pH (___) = \pd pH )™ L\ pHpPD
n Pt Po/\Xpe n/ n\Pyp P/ n\ PyPy
thus cov < 0 entails P}l < PR. Alternatively with x; = pr we get Y = % = p; and there-
— 1 1
fore cov =~ 3] (—t - —) (pt — Pt) = Pt (P—Ont - P_Et)

It may also be interesting to compare Carli to the unweighted harmonic index which is

: X _ X o
done in example 19. From the general rule X—t = % =1+ ;—; follows in this case
0

Pot _ pHpH _ Pgt_Pgt PI(;It
__POtPt0_1+ C <1

C
POt POt l:’Ot

6 Already Drobisch was aware of this fact, when he criticized Laspeyres for his formula P& = ¥ piqo/Y. Po9o
(see Drobisch (1871); 423). As almost all other economists in these days Laspeyres used the formula P§
not knowing that it was "invented" by Carli, and he developed his own formula (of which he never made
much use) only in Laspeyres (1871), a paper Drobisch explicitly referred to.
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This shows (in a quite simple manner) that both, Carli's index as well as the harmonic
index fail the time reversal test (as P{PY < 1 and P§PG > 1).

Table 7 summarizes the 19 examples (indicating also the model used):

Table 7
Carli | Dutot Laspeyres | Paasche Harmonic | Walsh ME Drobisch

Carli - 13E 14E 15E 19E

Dutot = 9C/11D | 10C/ 12D 16 E 6A*

Lasp. 1G/5A 17E 2G 3G 7C
Paasche = 18 E 8C
Harmon. -

Walsh - 4G

ME -

Drobisch )

* this is example 6a and 6b

It should not be too difficult to fill the gaps.

3. More functions of index formulas, e.g. the CSWD-index

We already examined some relations concerning Fisher's ideal index P§; = ’P(}tPOF; that

PDR*

is the geometric mean of Laspeyres and Paasche and Py;"", the arithmetic mean of the

same two indices. The following index

CpH _— /M
(D PocPor = 2Pio/Pit

is known as index of Carruthers, Selwood, Ward and Dalen (or CSWD-index for short).
Obviously (Pi)~1 = %Z? = P&, or in Fisher's words P{! is the "time antithesis" of P§
it

CSWD _
T

and vice versa,’ so

This means that example 19 enables us to compare a mixed index like P$SWP

components, P& and P{! respectively. The covariance in ex. 19 is given by

to one of its

1 .
cov = ;Z (& — Pé:t) (% — Pt%) =1- POCtPt% , and the centered covariance
t

cov 1 pCSWD 1 pCSwD
OV = == =—— — 1 sothat-%— = |[=—cand%— = [PSPS .
XY ~ PS.PS PGt PGPty Pot

Finally it might be interesting to examine how PG>WP

is related to Pg.. Using

7 P;, is the time antithesis of Py, if Py, = (P,,) " (just like P&} = (Pt%)_l). A geometric mean of a pair of time

antithetic indices as for example PG&WP = /POCtPOI'{ or P& = /PLPL always satisfies the time reversal test
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PGP PG PR

PR NPRPR fufz.
Factor f; can be evaluated using ex. 13 and Factor f2 with the help of ex. 16. Interchang-
ing yo and y1 in table 6 we get in the case of ex. 13 for f; the centered covariance (using

Po = X po/nornpy, = Y po)

- Pt/ Po Po Po_
COV(l) = D 1 ——1
Pot Po npy’

PC
Or CoV(qy = D -1=f -1

We now consider factor f; = POt/POt in a similar manner. For this purpose we are going
back to ex. 16 where the relevant covariance is

1 Po Pt 1 1 P(}-'[c - P(?c
o0 corm LY (oo gg) (B ) L (B 1R)
n p.  /\¥p. n/ n\ PHPD

from which we can easily derive

cov 1 pH
V) =7 =Z<p°/cpt—1>(&—1) =-1=f-1
- . P3 Pt n POt

1
P n

given the results for X and Y in ex. 16. We now can pull the strands together and con-
clude

(13) ng$ = \/(1 +T0v(1)) (1 + V() -

In order to compare PGWP to Fisher's ideal index P§; we again proceed in two steps, us-
ing ex. 14 for P& /P§ and ex. 18 for P& /P which results in

pL 1\ 1
1 4 -0t ﬁ_PL (po% __>_ — Pt
15 1 Pk |t Z(po Ot) Speqy n)n |1 HEOVG;Wo)
(13) PH pSSWD P+ [P 1 |1+ oo, wy
1+ l;;z( 0 PH> (Ptde — Pedo) pe’ "
ot Pt ot
Podo — Ptdt

1 . .
where pq; = ;Z ptg: and wy = Spoas” "Vt T Toeas” and this is precisely the same result

which was derived by CSW (1980), p.31. who only made use of eq. (5) rather than the
(generalized) Bortkiewicz theorem as exhibited in figure 1.

A final remark to PSSWD (or vRH in the notation of CSW)8 may be in order: it is well
known that the geometric mean of an index and its time antithesis will meet the time

reversal test. This applies to PSP = /POCtPO}{ or to P& = /P(}tPOPt , but of course it does

not apply the arithmeticmean, thatisto - 2 (PS+PH) nor to POR = %(P&+P§t).

4, Some additional remarks

Finally it appears useful to (once more) emphasize that firstly the relationship between
any two index functions can possibly be expressed in a number of different (though after

8 R stands for Carli's index
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second thoughts equivalent) ways and secondly that the "message" of the somewhat
abstract equations with covariances might not easily be grasped, and we therefore
should give some thoughts to enhance understandability.

1. In Diewert and v. d. Lippe (2010) a number of bias formulas between two indices X1
and Xo were derived without reference to Bortkiewicz's theorem. We define

bias = [X1/Xo0] -1 =cov(x,y) = %

and found some biases between the Drobisch price index PAR and the price indices of
Laspeyres (as in our example 7) and Paasche (ex. 8)°

It may be useful, to introduce a simplified notation for the covariancel?: in our ex. 7
cov(qt/qo,pv qo/Zqo) denotes our result ) (% - ngt) (pe — fjt)zq_:o (where p; is de-
fined as p; = Zzp_;cso_ Now in Diewert and v. d. Lippe we find the following alternative
covariances!!

cov(py qe/2qe - qo/Zqo, 1/n)

cov(py, (40/q)QGe qt/2qr) and

cov(py, qo/qe— 1/QBe, qe/Zqy).

It may bewilder, but all four covariances boil down to the same relationship, and they
all can be traced back to Bortkiewicz's theorem!? (although they were developed
without recourse to this formula). So we not only have a variety of formulas to de-
scribe basically the same thing, it may also be difficult to see how they are related to
one another.

This of course applies also to our ex. 8 where PR is compared to P
— a _ oD —_ 5y 90 .
cov(qt/qo,po, 9o/Zqo) = X (qo Qot) (Po = Po) 5
this result in can also be expressed as13
cov(po, qt/2qt = qo/Zqo, 1/n), or'*

qe/X de
cov(po, /% e 1, qo/Zqo) and

cov(po, qt/qo,po, qo/2qo)

and they all can be identified as special cases of Bortkiewicz's formula and describe
the same relationship, only in slightly different terms.

2. It is certainly a challenge to find good, intuitively appealing interpretations to such
results and the underlying equations of the generalized theorem of von Bortkewicz

9 We refrain from presenting here the corresponding bias- formulas between Drobisch and Laspeyres (accord-
ing to our example 7)

10 The rule should be cov(x-variable, y-variable, weights).

1 These are equations 22, 25 and 29 in Diewert and v. d. Lippe (2010).

12 T have shown this in v.d.Lippe (2010).

13 Equations 13, 16 and 20 in Diewert and v. d. Lippe (2010).

14 For this we gave the following verbal interpretation: "Thus the Drobisch index will have an upward bias rela-
tive to the Paasche index if products ... whose quantity shares are growing ... are associated with period 0 prices
... which are above the arithmetic average of the period 0 prices" (p. 693). Note that with weights 1/n the mean

of pjo prices is py = %Z pi¢ rather than Py = Y. pi¢ Gic/ 2 Qi
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which proved so widely applicable. Yet the results of such endeavours attained so far
are not very promising. We present some ideas of the Hungarian statistician Pal
Koves (1983), who in great detail dealt with Bortkiewicz's formulas (2) and (4),
however, not with the generalization of the theorem. Koves introduced the ratio of
two price indices X1/Xo which he called B in the honour of Bortkiewicz.1> He made an
attempt to interpret B - 1 (what we called "centered covariance") in terms of the
elasticities and the slope of a regression of q:/qo (dependent variable) on p¢/po as
regressor. It can easily be seen that for example

PY Qb Py PR 1 PME  q+B 1

B= 2= X=yB, 2-=-(1+B),and %+ =-— =)

PG QGe ~ Pge VB PG 2 ( ) PG q+1 (q Q%t)
Another concept, Kéves introduced was the "factor quotient index" (Kéves 1983; 93)
which may be denoted by ®. It turns out that @, defined as the ratio of a price indices
and the corresponding quantity index is the same in the case of quite a few index

PP PL PDR* DR 1 L p

Q_%i = Q_O(l).tt = Q(;DiR* where Qo = > (Qgt + Qov)-
It seems doubtful, however, whether further proceeding along this kind of reasoning
will really provide any new insights.

functions: ® =

3. In Siegel 1941b we find a presentation of the difference between two linear indices X1
- Xo in the form of a determinant. Assume X, = Y. X; wWjo and X; = ), x; w;; where x; =

pit/Pio, Wio = pioqio/Z pioqio, and wit = pitqit/Zpitqit then

X 1
_ Xt 1] =P and X: - Xo (Which is P — P& with the xi, wi,
0

x; 1

Wlt Wl’lt] . .

Wig - Wpt X’ 1
n

and wip variable as defined above) is given as determinant |P|. This may be interest-
ing for some further generalizations of Bortkiewicz's theorem.

References

Carruthers, A. G., Selwood, D. J. and P. W. Ward 1980, Recent Developments in the Retail
Prices Index, The Statistician, Vol. 29, No. 1, pp. 1 - 32 (quoted as CSW (1980))

Dalen, Jorgen 1992, Computing Elementary Aggregates in the Swedish Consumer Price In-
dex, Journal of Official Statistics, Vol. 8, No. 2, pp. 129 -147.

Diewert, W. Erwin 1997, Commentary, Review of the Federal Reserve Bank of St. Louis,
May/June 1997, pp. 127 — 138.

Diewert, W. Erwin and Peter von der Lippe 2010, Notes on Unit Value Index Bias, Jahrbii-
cher flir Nationalokonomie und Statistik 230/2, pp. 690 — 708.

Drobisch, Moritz Wilhelm 1871, Ueber einige Entwiirfe gegen die in diesen Jahrbiichern ver-
offentliche neue Methode, die Verdnderungen der Waarenpreise und des Geldwerthes
zu berechnen, Jahrbiicher fiir Nationalokonomie und Statistik, Vol. 16, pp. 416 —427.

Laspeyres, Etienne, 1871, Die Berechnung einer mittleren Warenpreissteigerung, Jahrbiicher
fiir Nationalokonomie und Statistik, Vol. 16, pp. 296 — 314.

Koves, Pal 1983, Index Theory and Economic Reality, Budapest 1983.

15 Thus B is the bias of X; (relative to X,) plus one.



Peter von der Lippe, Bortkiewicz's theorem page 14 of 14

Siegel, Irving H. (1941a), The Difference Between the Paasche and Laspeyres Index-Number
Formulas, Journal of the American Statistical Association, Vol. 36, No. 215, pp. 343 -
350

Siegel, Irving H. (1941b), Further Notes on the Difference Between Index-Number Formulas,
Journal of the American Statistical Association Vol. 36, No. 216, pp. 519 — 524

von Bortkiewicz 1923, Zweck und Struktur einer Preisindexzahl, Nordisk Statistik
Tidskrift 2, pp. 369 - 408

von der Lippe, Peter 2007, Index Theory and Price Statistics, Frankfurt (P. Lang)

von der Lippe, Peter 2010, Price Indices on the Basis of Unit Values, Diskussionsbeitrag aus
der Fakultit fiir Wirtschaftswissenschaften, Universitdt Duisburg-Essen, Campus Essen
Nr. 185



