# MPRA 

# Covariances and relationships between price indices: Notes on a theorem of Ladislaus von Bortkiewicz on linear index functions 

von der Lippe, Peter

4. May 2012

Online at http://mpra.ub.uni-muenchen.de/38566/ MPRA Paper No. 38566, posted 04. May 2012 / 10:27

# Covariances and relationships between price indices 

Notes on a theorem of Ladislaus von Bortkiewicz on linear index functions Peter von der Lippe

The note examines a generalization of a theorem of Bortkiewicz which relates the difference between a Paasche and a Laspeyres price index to a covariance between price and quantity relatives. The generalized theorem is used to demonstrate a number of interesting special applications. It turns out that some known relationships between two index functions can be expressed more elegantly. In other cases where not much is known yet about how the two functions are related to one another, we could establish an interesting equation on the basis of this theorem. This demonstrates the remarkable flexibility and usefulness of the generalized Bortkiewicz - theorem.

## 1. Generalization of a theorem for additive indices of Ladislaus von Bortkiewicz

It is well known that Ladislaus von Bortkiewicz (1868-1931) found that the Paasche price index $\left(\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}\right)$ is related to the Laspeyres price index $\left(\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}\right)$ as follows

$$
\begin{equation*}
\frac{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}}=1+\frac{\operatorname{cov}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}} \mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}}} \tag{1}
\end{equation*}
$$

where $Q_{0 t}^{L}$ denotes the Laspeyres quantity index and cov is the (weighted) covariance between price and quantity relatives given by

$$
\begin{equation*}
\operatorname{cov}=\sum_{i=1}^{n}\left(\frac{p_{i t}}{p_{i 0}}-P_{0 t}^{L}\right)\left(\frac{q_{i t}}{q_{i 0}}-Q_{0 t}^{L}\right) w_{i 0}=V_{0 t}-P_{0 t}^{L} Q_{0 t}^{L}=Q_{0 t}^{L}\left(P_{0 t}^{P}-P_{0 t}^{L}\right)=P_{0 t}^{L}\left(Q_{0 t}^{P}-Q_{0 t}^{L}\right), \tag{2}
\end{equation*}
$$

with base period expenditure weights $w_{i 0}=p_{i 0} q_{i 0} / \sum p_{i 0} q_{i 0}$ of the $n$ commodities ( $i=$ $1, \ldots, \mathrm{n}$ ). As $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}$ and $\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}}$ is the arithmetic mean of price and quantity relatives respectively the "centered" covariance $\frac{\text { cov }}{\mathrm{P}_{\mathrm{ot} \mathrm{L} \mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}}}^{\mathrm{L}}}$ can also be written as follows

$$
\begin{equation*}
\overline{\operatorname{cov}}=\frac{\operatorname{cov}}{P_{0 t}^{L} Q_{0 t}^{L}}=r_{p q} C_{p} C_{q}=\sum_{i}\left(\frac{p_{i t} / p_{i 0}}{P_{0 t}^{L}}-1\right)\left(\frac{q_{i t} / q_{i 0}}{Q_{0 t}^{L}}-1\right) w_{i 0} . \tag{3}
\end{equation*}
$$

Using the correlation coefficient $\mathrm{r}_{\mathrm{pq}}$, and the coefficients of variation $\mathrm{C}_{\mathrm{p}}, \mathrm{C}_{\mathrm{q}}$ the theorem of Bortkiewicz can be written as

$$
\begin{equation*}
\frac{P_{0 t}^{\mathrm{P}}}{P_{0 \mathrm{t}}^{\mathrm{L}}}=\frac{\mathrm{V}_{0 \mathrm{t}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}} \mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}}}=1+\mathrm{r}_{\mathrm{pq}} \mathrm{C}_{\mathrm{p}} \mathrm{C}_{\mathrm{q}}=1+\overline{\mathrm{cov}} . \tag{4}
\end{equation*}
$$

Interestingly this well known relationship between a Paasche and a Laspeyres price index turns out to be only a special case of a more general law of the ratio of two additive (linear) indices $\mathrm{X}_{1}$ and $\mathrm{X}_{0}$ respectively (see fig. 1).

An index function $\mathrm{P}\left(\mathbf{p}_{0}, \mathbf{q}_{0}, \mathbf{p}_{t}, \mathbf{q}_{\mathrm{t}}\right)$ is said to be linear when it can be expressed as a ratio of vector products as for example
$\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}=\mathrm{P}^{\mathrm{L}}\left(\mathbf{p}_{0}, \mathbf{q}_{0}, \mathbf{p}_{\mathrm{t}}, \mathbf{q}_{\mathrm{t}}\right)=\frac{\sum \mathrm{p}_{\mathrm{t}} \mathrm{q}_{0}}{\sum \mathrm{p}_{0} \mathrm{q}_{0}}=\frac{\mathbf{p}_{\mathrm{t}}^{\prime} \mathbf{q}_{0}}{\mathbf{p}_{0}^{\prime} \mathbf{q}_{0}}$, and thus also as $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}=\sum \frac{\mathrm{p}_{\mathrm{it}}}{\mathrm{p}_{\mathrm{i} 0}} \frac{\mathrm{p}_{\mathrm{i} i} \mathrm{q}_{\mathrm{i}}}{\mathbf{p}_{0}^{\prime} \mathbf{q}_{0}^{\prime}}$.

For example the function $\mathrm{P}_{0 \mathrm{t}}^{\Lambda}=\mathrm{P}^{\Lambda}\left(\mathbf{p}_{0}, \mathbf{q}_{0}, \mathbf{p}_{\mathrm{t}}, \mathbf{q}_{\mathrm{t}}\right)=\Pi\left(\frac{\mathrm{p}_{\mathrm{t}}}{\mathrm{p}_{0}}\right)^{\frac{\mathrm{p}_{0} \mathrm{q}_{0}}{\sum \mathrm{p}_{0} q_{0}}}$ (which may be called the log -Laspeyres price index) is not a linear index.

Figure 1: Generalization of Bortkiewicz's theorem
(law of the ratio of two additive indices)
Taken from v. d. Lippe (2007), p. 196

| first additive index $\mathrm{X}_{0}$ |
| :---: |
| $\mathrm{X}_{0}=\frac{\sum \mathrm{x}_{\mathrm{t}} \mathrm{y}_{0}}{\sum \mathrm{x}_{0} \mathrm{y}_{0}}$ |


| second additive index $\mathrm{X}_{\mathrm{t}}$ |
| :---: |
| $\mathrm{X}_{\mathrm{t}}=\frac{\sum \mathrm{x}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}}}{\sum \mathrm{x}_{0} \mathrm{y}_{\mathrm{t}}}$ |

weighted (weights $\mathrm{w}_{0}=\mathrm{x}_{0} \mathrm{y}_{0} / \sum \mathrm{x}_{0} \mathrm{y}_{0}$
throughout) arithmetic mean of the relatives


$$
\left.\mathrm{y}_{\mathrm{t}} / \mathrm{y}_{0}: \overline{\mathrm{Y}}=\frac{\sum \mathrm{y}_{\mathrm{t}} \mathrm{x}_{0}}{\sum \mathrm{y}_{0} \mathrm{x}_{0}} \quad *\right)
$$

variances (weights $w_{0}$ ) of the relatives

$$
\mathrm{x}_{\mathrm{t}} / \mathrm{x}_{0}: \mathrm{s}_{\mathrm{x}}^{2}=\sum\left(\frac{\mathrm{x}_{\mathrm{t}}}{\mathrm{x}_{0}}-\overline{\mathrm{X}}\right)^{2} \mathrm{w}_{0}
$$

$$
\mathrm{yt}_{\mathrm{t}} / \mathrm{y}_{0}: \mathrm{s}_{\mathrm{y}}^{2}=\sum\left(\frac{\mathrm{y}_{\mathrm{t}}}{\mathrm{y}_{0}}-\overline{\mathrm{Y}}\right)^{2} \mathrm{w}_{0}
$$

| the covariance is given by |
| :---: |
| (2a) $\quad \operatorname{cov}=s_{x y}=\sum\left(\frac{x_{t}}{x_{0}}-\bar{X}\right)\left(\frac{y_{t}}{y_{0}}-\bar{Y}\right) w_{0}=\frac{\sum x_{t} y_{t}}{\sum x_{0} y_{0}}-\bar{X} \cdot \bar{Y}=\bar{Y}\left(X_{t}-X_{0}\right)$ |
| and the ratio of two additive indices |
| (1a) $\quad \frac{X_{t}}{X_{0}}=1+r_{x y} C_{x} C_{y}=1+\frac{s_{x y}}{\bar{X} \cdot \bar{Y}}$ where $r_{x y}=\frac{s_{x y}}{s_{x} s_{y}}, C_{x}=\frac{s_{x}}{\bar{X}}$ and $C_{y}=\frac{s_{y}}{\bar{Y}}$ and |
| (1b) $\quad \overline{\operatorname{cov}}(x, y)=r_{x y} C_{x} C_{y}=\frac{s_{x y}}{\bar{X} \cdot \bar{Y}}$ is the centered covariance |

*) The formula of $\bar{Y}=Y_{0}$ can be derived from $\bar{X}=X_{0}$ by interchanging $x$ and $y$. In the same way we can derive $Y_{1}$ from $X_{1}$, so that $X_{1} / X_{0}=Y_{1} / Y_{0}$

Now in view of fig. 1 we may substitute $x$ - and $y$-vectors by prices and quantities as follows

| 01 | $\mathrm{X}_{0}=\overline{\mathrm{X}}$ | $\mathrm{X}_{1}$ | $\mathrm{x}_{0}$ | $\mathrm{x}_{\mathrm{t}}$ | $\mathrm{y}_{0}$ | $\mathrm{y}_{\mathrm{t}}$ | $\mathrm{w}_{\mathrm{i} 0}$ | $\overline{\mathrm{Y}}$ |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}$ | $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}$ | $\mathrm{p}_{\mathrm{i} 0}$ | $\mathrm{p}_{\mathrm{it}}$ | $\mathrm{q}_{\mathrm{i} 0}$ | $\mathrm{q}_{\mathrm{it}}$ | $\mathrm{p}_{\mathrm{i} 0} \mathrm{q}_{\mathrm{i} 0} / \Sigma \mathrm{p}_{\mathrm{i} 0} \mathrm{q}_{\mathrm{i} 0}$ | $\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}}$ |

We then get according to fig. 1 for $\mathrm{s}_{\mathrm{xy}}$ exactly the covariance cov as defined in (2) that is the covariance between price and quantity relatives weighted with base period expenditure shares $\mathrm{w}_{\mathrm{i} 0}=\mathrm{p}_{\mathrm{i} 0} \mathrm{q}_{\mathrm{i} 0} / \sum \mathrm{p}_{\mathrm{i} 0} \mathrm{q}_{\mathrm{i}}$.
An alternative to (2) is (Siegel 1941a; 345, referring to Staehle for this result)

$$
\begin{align*}
& \operatorname{cov}^{*}=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\frac{\mathrm{p}_{\mathrm{i} 0}}{\mathrm{p}_{\mathrm{it}}}-\frac{1}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{p}}}\right)\left(\frac{\mathrm{q}_{\mathrm{i} 0}}{\mathrm{q}_{\mathrm{it}}}-\frac{1}{\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{p}}}\right) \frac{\mathrm{p}_{\mathrm{it}} q_{\mathrm{it}}}{\sum \mathrm{p}_{\mathrm{it}} \mathrm{q}_{\mathrm{it}}}=\frac{1}{\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{p}}}\left(\frac{1}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}}-\frac{1}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{p}}}\right) \text {, so that }  \tag{2a}\\
& \frac{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{p}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}}=1+\frac{\operatorname{cov}^{*}}{\left(\mathrm{P}_{0 \mathrm{t}}^{\mathrm{p}}\right)^{-1}\left(\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{P}}\right)^{-1}} .
\end{align*}
$$

Another example is ${ }^{1}$ a comparison between the Laspeyres and Walsh price index (the latter is defined as $\left.P_{0 t}^{W}=\frac{\sum p_{t} \sqrt{q_{0} q_{t}}}{\sum \mathrm{p}_{0} \sqrt{q_{0} q_{t}}}\right)$ where the elements $\mathrm{x}_{0}$, $\mathrm{x}_{\mathrm{t}}, \mathrm{y}_{0}$ and $\mathrm{y}_{\mathrm{t}}$ may be defined as follows:

| 02 | $\mathrm{X}_{0}=\overline{\mathrm{X}}$ | $\mathrm{X}_{\mathrm{t}}$ | $\mathrm{x}_{0}$ | $\mathrm{x}_{\mathrm{t}}$ | $\mathrm{y}_{0}$ | $\mathrm{y}_{\mathrm{t}}$ | $\overline{\mathrm{Y}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}$ | $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{W}}$ | $\mathrm{p}_{0}$ | $\mathrm{p}_{\mathrm{t}}$ | $\mathrm{q}_{0}$ | $\sqrt{\mathrm{q}_{0} \mathrm{q}_{\mathrm{t}}}$ | $\sum \mathrm{p}_{0} \sqrt{\mathrm{q}_{0} \mathrm{q}_{\mathrm{t}}} / \sum \mathrm{p}_{0} \mathrm{q}_{0}$ |

The relevant variances then are $\frac{x_{t}}{x_{0}}=\frac{p_{t}}{p_{0}}$ relative to the mean $\bar{X}=X_{0}=P_{0 t}^{L}$, and the variance of the $\frac{y_{t}}{y_{0}}=\sqrt{\frac{q_{t}}{q_{0}}}$ measured around $\bar{Y}=\sum \sqrt{\frac{q_{t}}{q_{0}}} \frac{p_{0} q_{0}}{\sum p_{0} q_{0}}$ so that the covariance then is given by cov $=\sum_{i=1}^{n}\left(\frac{p_{t}}{p_{0}}-P_{0 t}^{L}\right)\left(\sqrt{\frac{q_{t}}{q_{0}}}-\bar{Y}\right) \frac{p_{0} q_{0}}{\sum p_{0} q_{0}}=\frac{\sum p_{t} \sqrt{q_{0} q_{t}}}{\sum p_{0} q_{0}}-\bar{X} \cdot \bar{Y}$ and
$\overline{\operatorname{cov}}(\mathrm{x}, \mathrm{y})=\frac{\sum \mathrm{p}_{\mathrm{t}} \sqrt{\mathrm{q}_{0} \mathrm{q}_{\mathrm{t}}}}{\sum \mathrm{p}_{\mathrm{t}} \mathrm{q}_{0}} \cdot \frac{\sum \mathrm{p}_{0} \mathrm{q}_{0}}{\sum \mathrm{p}_{0} \sqrt{\mathrm{q}_{0} \mathrm{q}_{\mathrm{t}}}}=\frac{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{W}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}}$
Thus the extent to which Walsh's index, $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{W}}$ is greater or smaller than Laspeyres' index, $P_{0 t}^{L}$ depends on the covariance between $\frac{p_{t}}{p_{0}}$ and $\sqrt{\frac{q_{t}}{q_{0}}}$. A consequence of this result is for example: if $\frac{p_{t}}{p_{0}}$ and $\frac{q_{t}}{q_{0}}$ are negatively correlated such that $P_{0 t}^{L}>P_{0 t}^{p}$ the same will be true for $\frac{p_{t}}{p_{0}}$ and $\sqrt{\frac{q_{t}}{q_{0}}}$ such that $P_{0 t}^{L}>P_{0 t}^{W}$. Thus not surprisingly we get: if $P_{0 t}^{L}<P_{0 t}^{P}$ then $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}<\mathrm{P}_{0 \mathrm{t}}^{\mathrm{W}}$ and if $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}>\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}$ then also $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}>\mathrm{P}_{0 \mathrm{t}}^{\mathrm{W}}$.

## 2. Special cases of the general theorem

In order to find relationships between a weighted and an unweighted index number it is advisable to set one or two x or y variables equal to unity. It then turns out that the formulas given in fig. 1 are generally valid. For example upon setting $x_{0}=y_{0}=1$ and thereby $\mathrm{w}_{0}=1 / \mathrm{n}$ we get (as we do in general) $\overline{\mathrm{X}}=\mathrm{X}_{0}$ and $\mathrm{X}_{\mathrm{t}}=\frac{\frac{1}{\bar{n}} \sum \mathrm{x}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}}}{\overline{\mathrm{Y}}}$ such that with $\mathrm{x}_{0}=\mathrm{y}_{0}=$ 1 we end up with

$$
\begin{equation*}
\operatorname{cov}=s_{x y}=\sum\left(\frac{x_{t}}{x_{0}}-\bar{X}\right)\left(\frac{y_{t}}{y_{0}}-\bar{Y}\right) w_{0}=\frac{1}{n} \sum\left(x_{t}-\bar{X}\right)\left(y_{t}-\bar{Y}\right) \tag{5}
\end{equation*}
$$

[^0]$$
=\frac{\sum \mathrm{x}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}}}{\sum \mathrm{x}_{0} \mathrm{y}_{0}}-\overline{\mathrm{X}} \cdot \overline{\mathrm{Y}}=\overline{\mathrm{Y}}\left(\mathrm{X}_{\mathrm{t}}-\mathrm{X}_{0}\right)
$$

Hence the "normal" formula for the (unweighted) covariance between x and y relatives is simply just a special case of Bortkiewicz's theorem. Using $\bar{X}=X_{0}$ we get

Table 1: Some special variants of the generalized theorem of L. von Bortkiewicz on two additive indices
Taken from v. d. Lippe (2007), p. 196

$$
\operatorname{cov}=s_{x y}=\sum\left(\frac{x_{t}}{x_{0}}-\bar{X}\right)\left(\frac{y_{t}}{y_{0}}-\bar{Y}\right) w_{0}=\bar{Y}\left(X_{t}-X_{0}\right)
$$

| Model | assumptions | $\mathrm{X}_{0}=\overline{\mathrm{X}}$ | $\mathrm{X}_{\mathrm{t}}$ | $\overline{\mathrm{Y}}=\mathrm{Y}_{0}$ | $\mathrm{w}_{0}$ |
| :---: | :--- | :---: | :---: | :---: | :---: |
| G | general | $\frac{\sum \mathrm{x}_{\mathrm{t}} \mathrm{y}_{0}}{\sum \mathrm{x}_{0} \mathrm{y}_{0}}$ | $\frac{\sum \mathrm{x}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}}}{\sum \mathrm{x}_{0} \mathrm{y}_{\mathrm{t}}}$ | $\frac{\sum \mathrm{x}_{0} \mathrm{y}_{\mathrm{t}}}{\sum \mathrm{x}_{0} \mathrm{y}_{0}}$ | $\frac{\mathrm{x}_{0} \mathrm{y}_{0}}{\sum \mathrm{x}_{0} \mathrm{y}_{0}}$ |
| A | $\mathrm{x}_{0}=1$ | $\frac{\sum \mathrm{x}_{\mathrm{t}} \mathrm{y}_{0}}{\sum \mathrm{y}_{0}}$ | $\frac{\sum \mathrm{x}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}}}{\sum \mathrm{y}_{\mathrm{t}}}$ | $\frac{\sum \mathrm{y}_{\mathrm{t}}}{\sum \mathrm{y}_{0}}$ | $\frac{\mathrm{y}_{0}}{\sum \mathrm{y}_{0}}$ |
| B | $\mathrm{x}_{\mathrm{t}}=1$ | $\frac{\sum \mathrm{y}_{0}}{\sum \mathrm{x}_{0} \mathrm{y}_{0}}$ | $\frac{\sum \mathrm{y}_{\mathrm{t}}}{\sum \mathrm{x}_{0} \mathrm{y}_{\mathrm{t}}}$ | $\frac{\sum \mathrm{x}_{0} \mathrm{y}_{\mathrm{t}}}{\sum \mathrm{x}_{0} \mathrm{y}_{0}}$ | $\frac{\mathrm{x}_{0} \mathrm{y}_{0}}{\sum \mathrm{x}_{0} \mathrm{y}_{0}}$ |
| C | $\mathrm{y}_{0}=1$ | $\frac{\sum \mathrm{x}_{\mathrm{t}}}{\sum \mathrm{x}_{0}}$ | $\frac{\sum \mathrm{x}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}}}{\sum \mathrm{x}_{0} \mathrm{y}_{\mathrm{t}}}$ | $\frac{\sum \mathrm{x}_{0} \mathrm{y}_{\mathrm{t}}}{\sum \mathrm{x}_{0}}$ | $\frac{\mathrm{x}_{0}}{\sum \mathrm{x}_{0}}$ |
| D | $\mathrm{y}_{\mathrm{t}}=1$ | $\frac{\sum \mathrm{x}_{\mathrm{t}} \mathrm{y}_{0}}{\sum \mathrm{x}_{0} \mathrm{y}_{0}}$ | $\frac{\sum \mathrm{x}_{\mathrm{t}}}{\sum \mathrm{x}_{0}}$ | $\frac{\sum \mathrm{x}_{0}}{\sum \mathrm{x}_{0} \mathrm{y}_{0}}$ | $\frac{\mathrm{x}_{0} \mathrm{y}_{0}}{\sum \mathrm{x}_{0} \mathrm{y}_{0}}$ |
| E | $\mathrm{x}_{0}=\mathrm{y}_{0}=1$ | $\frac{\sum \mathrm{x}_{\mathrm{t}}}{\mathrm{n}}$ | $\frac{\sum \mathrm{x}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}}}{\sum \mathrm{y}_{\mathrm{t}}}$ | $\frac{\sum \mathrm{y}_{\mathrm{t}}}{\mathrm{n}}$ | $\frac{1}{\mathrm{n}}$ |
| F | $\mathrm{x}_{\mathrm{t}}=\mathrm{y}_{\mathrm{t}}=1$ | $\frac{\sum \mathrm{y}_{0}}{\sum \mathrm{x}_{0} \mathrm{y}_{0}}$ | $\frac{\mathrm{n}}{\sum \mathrm{x}_{0}}$ | $\frac{\sum \mathrm{x}_{0}}{\sum \mathrm{x}_{0} \mathrm{y}_{0}}$ | $\frac{\mathrm{x}_{0} \mathrm{y}_{0}}{\sum \mathrm{x}_{0} \mathrm{y}_{0}}$ |

Strictly speaking the table is superfluous because all special cases (A through F) can easily be derived from G by setting certain x or y terms equal to unity. The table suggests that in many cases a choice among various models can be made when two indices are to be compared.

$$
\begin{equation*}
\overline{\operatorname{cov}}=\frac{X_{t}}{\bar{X}}-1=\frac{X_{t}}{X_{0}}-1 . \tag{5a}
\end{equation*}
$$

## 3. Some examples

## a) General theorem (model G)

In order to compare $P_{0 t}^{L}$ to the Marshall-Edgeworth index

$$
\begin{equation*}
\mathrm{P}_{\mathrm{ot}}^{\mathrm{ME}}=\frac{\sum \mathrm{p}_{\mathrm{t}} \cdot \frac{1}{2}\left(\mathrm{q}_{0}+\mathrm{q}_{\mathrm{t}}\right)}{\sum \mathrm{p}_{0} \cdot \frac{1}{2}\left(\mathrm{q}_{0}+\mathrm{q}_{\mathrm{t}}\right)}=\frac{\sum \mathrm{p}_{\mathrm{t}}\left(\mathrm{q}_{0}+\mathrm{q}_{\mathrm{t}}\right)}{\sum \mathrm{p}_{0}\left(\mathrm{q}_{0}+\mathrm{q}_{\mathrm{t}}\right)} \tag{6}
\end{equation*}
$$

we proceed as indicated in row 3 of table 2 . The index $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{ME}}$ can also be written as weighted arithmetic mean of $P_{0 t}^{L}$ and $P_{0 t}^{P}$, viz. $P_{0 t}^{M E}=\frac{1}{1+Q_{0 t}^{L}} \cdot P_{0 t}^{L}+\frac{Q_{0 t}^{L}}{1+Q_{0 t}^{L}} \cdot P_{0 t}^{P}$ so that $\frac{P_{o t}^{M E}}{P_{o t}^{\mathrm{L}}}=\frac{1+\mathrm{Q}_{0 t}^{P}}{1+\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}}}=\frac{1+\lambda \mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}}}{1+\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}}}$ where $\lambda=\frac{\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{P}}}{\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}}}=\frac{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}}$. Put otherwise $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}>\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}($ that is $\lambda<1$ ) implies $P_{0 t}^{L}>P_{0 t}^{M E}$.
In the case of example 3 (row 3 of table 2) $\bar{Y}=\frac{\sum p_{0}\left(q_{0}+q_{t}\right)}{\sum p_{0} q_{0}}=\sum \frac{\mathrm{q}_{0}+\mathrm{q}_{t}}{q_{0}} \frac{p_{0} q_{0}}{\sum \mathrm{p}_{0} \mathrm{q}_{0}}=1+\mathrm{Q}_{\mathrm{t}}^{\mathrm{L}}$ such that the relevant covariance is given by
$\operatorname{cov}=\sum\left(\frac{p_{t}}{p_{0}}-P_{0 t}^{L}\right)\left(\frac{q_{0}+q_{t}}{q_{0}}-\bar{Y}\right) \frac{p_{0} q_{0}}{\sum p_{0} q_{0}}=\sum\left(\frac{p_{t}}{p_{0}}-P_{0 t}^{L}\right)\left(\frac{q_{t}}{q_{0}}-Q_{0 t}^{L}\right) \frac{p_{0} q_{0}}{\sum p_{0} q_{0}}$.
This means that for comparing $P_{0 t}^{\mathrm{L}}$ to $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{ME}}$ and $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}$ to $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}$ the result depends on the same covariance (as defined in eq. 2). It is again this covariance which also is involved in the comparison of $P_{0 t}^{L}\left(\right.$ or $\left.P_{0 t}^{P}\right)$ to Fisher's ideal index $P_{0 t}^{F}=\sqrt{\mathrm{P}_{0 t}^{L} P_{0 t}^{P}}$ because $\frac{\mathrm{P}_{0 t}^{\mathrm{F}}}{\mathrm{P}_{0 t}^{\mathrm{L}}}=\sqrt{\frac{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}}}$ and $\frac{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{F}}}{\mathrm{P}_{\mathrm{ot}}^{\mathrm{P}}}=1 / \sqrt{\frac{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}}{\mathrm{P}_{\mathrm{ot}}^{\mathrm{L}}}}$.
Finally a simple function of this covariance is also in play when $P_{0 t}^{L}$ is compared to the following index ${ }^{2}$

$$
\begin{equation*}
\mathrm{P}_{0 \mathrm{t}}^{\mathrm{DR} *}=\frac{1}{2}\left(\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}+\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}\right) \tag{6a}
\end{equation*}
$$

As $\frac{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{DR} *}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}}=\frac{1}{2}\left(1+\frac{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}}\right)$ it follows: if $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}<\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}$ then also $\frac{\mathrm{P}_{0 t}^{\mathrm{DR} *}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}}<1$ and therefore $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{DR} *}<\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}$.
Table 2: Some examples for the general theorem

|  | $\mathrm{X}_{0}=\overline{\mathrm{X}}$ | $\mathrm{X}_{\mathrm{t}}$ | $\mathrm{x}_{0}$ | $\mathrm{x}_{\mathrm{t}}$ | $\mathrm{y}_{0}$ | $\mathrm{y}_{\mathrm{t}}$ | $\overline{\mathrm{Y}}$ | $\mathrm{w}_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}$ | $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{ME}}$ | $\mathrm{p}_{0}$ | $\mathrm{p}_{\mathrm{t}}$ | $\mathrm{q}_{0}$ | $\mathrm{q}_{0}+\mathrm{q}_{\mathrm{t}}$ | see text <br> above | $\mathrm{p}_{0} \mathrm{q}_{0} / \sum \mathrm{p}_{0} \mathrm{q}_{0}$ |
| 4 | $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{W}}$ | $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{ME}}$ | $\mathrm{p}_{0}$ | $\mathrm{p}_{\mathrm{t}}$ | $\sqrt{\mathrm{q}_{0} \mathrm{q}_{\mathrm{t}}}$ | $\left(\mathrm{q}_{0}+\mathrm{q}_{\mathrm{t}}\right) / 2$ | see text <br> below | see text be- <br> low |

The second example here (row 4) does not appear to be intuitively appealing because it may be difficult to find a meaningful interpretation for the "quantity relatives" $\frac{1}{2}\left(q_{0}+q_{t}\right) / \sqrt{q_{0} q_{t}}$ (which are ratios of an arithmetic and a geometric mean - over two periods - of quantities for each commodity $\mathrm{i}=1, \ldots, \mathrm{n}$ and therefore $\geq 1$ ), nor appears $\overline{\mathrm{Y}}=\frac{\frac{1}{2} \sum p_{0} \cdot\left(q_{0}+q_{t}\right)}{\sum p_{0} \sqrt{q_{0} q_{t}}}$ to make much sense. However, the weights $w_{0}=\frac{p_{0} \cdot \sqrt{q_{0} q_{t}}}{\sum p_{0} \sqrt{q_{0} q_{t}}}$ may clearly be viewed as expenditure shares for some fictitious (average) quantity.

## b) $\mathrm{x}_{0}$ or $\mathrm{x}_{\mathrm{t}}=0$ (model A and B respectively)

As an alternative to example 1 we may compare $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}$ to $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}$ also as indicated in ex. 5 in the following table 3 where the critical covariance is

[^1]$\operatorname{cov}=\sum\left(\frac{p_{t}}{p_{0}}-P_{0 t}^{L}\right)\left(\frac{1}{Q_{0 t}^{L}} \frac{q_{t}}{q_{0}}-1\right) \frac{p_{0} q_{0}}{\sum p_{0} q_{0}}=\frac{V_{0 t}}{Q_{0 t}^{L}}-P_{0 t}^{L}=P_{0 t}^{P}-P_{0 t}^{L}$.
We get this also when we divide (2) by $Q_{0 t}^{L}$.
Table 3: Some examples for the model A $\left(x_{0}=1\right)$

|  | $\mathrm{X}_{0}=\overline{\mathrm{X}}$ | $\mathrm{X}_{\mathrm{t}}$ | $\mathrm{x}_{0}$ | $\mathrm{x}_{\mathrm{t}}$ | $\mathrm{y}_{0}$ | $\mathrm{y}_{\mathrm{t}}$ | $\overline{\mathrm{Y}}$ | $\mathrm{w}_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}$ | $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}$ | 1 | $\mathrm{p}_{\mathrm{t}} / \mathrm{p}_{0}$ | $\mathrm{p}_{0} \mathrm{q}_{0} / \Sigma \mathrm{p}_{0} \mathrm{q}_{0}$ | $\mathrm{p}_{0} \mathrm{q}_{\mathrm{t}} / \Sigma \mathrm{p}_{0} \mathrm{q}_{\mathrm{t}}$ | 1 | $\mathrm{w}_{0}=\mathrm{y}_{0}$ |
| 6 a | $\overline{\mathrm{p}}_{\mathrm{t}}$ | $\tilde{\mathrm{p}}_{\mathrm{t}}$ | 1 | $\mathrm{p}_{\mathrm{t}}$ | $1 / \mathrm{n}$ | $\mathrm{q}_{\mathrm{t}} / \Sigma \mathrm{q}_{\mathrm{t}}$ | 1 | $\mathrm{w}_{0}=\mathrm{y}_{0}$ |
| 6 b | $\overline{\mathrm{p}}_{0}$ | $\tilde{\mathrm{p}}_{0}$ | 1 | $\mathrm{P}_{0}$ | $1 / \mathrm{n}$ | $\mathrm{q}_{0} / \Sigma \mathrm{q}_{0}$ | 1 | $\mathrm{w}_{0}=\mathrm{y}_{0}$ |

A bit more difficult appears at first glance, however, the comparison between Dutot's price index $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}$ and the following index of Drobisch (example 6)

$$
\begin{equation*}
\mathrm{P}_{0 \mathrm{t}}^{\mathrm{DR}}=\frac{\sum \mathrm{p}_{\mathrm{t}} \mathrm{q}_{\mathrm{t}} / \sum \mathrm{q}_{\mathrm{t}}}{\sum \mathrm{p}_{0} \mathrm{q}_{\mathrm{o}} / \sum \mathrm{q}_{0}}=\frac{\tilde{\mathrm{p}}_{\mathrm{t}}}{\tilde{\mathrm{p}}_{0}} \tag{7}
\end{equation*}
$$

By contrast to $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{DR} *}=\frac{1}{2}\left(\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}+\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}\right)$ this index is much better known as an index suggested by Drobisch. However; unfortunately $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{DR}}$ is often called "unit value index". It is simply a ratio of two unit values $\tilde{\mathrm{p}}_{\mathrm{t}}$ and $\tilde{\mathrm{p}}_{0} \cdot{ }^{3}$
As a rule these two quantity weighted averages of prices are different from the unweighted averages $\overline{\mathrm{p}}_{\mathrm{t}}$ and $\overline{\mathrm{p}}_{0}$ in $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}=\frac{1}{\mathrm{n}} \sum \mathrm{p}_{\mathrm{t}} / \frac{1}{n} \sum \mathrm{p}_{0}=\overline{\mathrm{p}}_{\mathrm{t}} / \overline{\mathrm{p}}_{0}$. Hence comparing $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}$ to $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{DR}}$ boils down to comparing two kinds of average prices. This may be done in two steps: the first step (row 6a) results in the (numerator) covariance $c_{n}=\tilde{p}_{t}-\bar{p}_{t}$ and the second (row 6b) in the denominator covariance, which is $c_{d}=\tilde{p}_{0}-\overline{\mathrm{p}}_{0}$ so that we end up with
(7a) $\frac{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{DR}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}}=\frac{1+\mathrm{c}_{\mathrm{n}} / \overline{\mathrm{p}}_{\mathrm{t}}}{1+\mathrm{c}_{\mathrm{d}} / \overline{\mathrm{p}}_{0}}$.
In a similar manner CSW 1980 derived a ratio with different covariances in numerator and denominator as an alternative to our eq. 8 (see below example 14).

## c) $y_{0}$ or $y_{t}=0$ (model C and D respectively)

We now make a comparison between $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}$ and $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{DR}}$ using the fact that both indices are related to the value ratio (or value "index" $V_{0 t}=\Sigma p_{t} q_{t} / \Sigma p_{0} q_{0}$ ) as follows

- $P_{0 t}^{D R}=\frac{V_{0 t}}{Q_{0 t}^{D}}$ where $Q_{0 t}^{D}$ is the quantity index of Dutot defined as $Q_{0 t}^{D}=\frac{\sum q_{t}}{\sum q_{0}}$
- and $P_{0 t}^{L}$ can be written as $P_{0 t}^{L}=V_{0 t} / Q_{0 t}^{P}$ so that
our ratio $X_{1} / X_{0}$ now is $\frac{P_{0 t}^{D R}}{P_{0 t}^{L}}=\frac{Q_{0 t}^{P}}{Q_{0 t}^{D}}$ so that a comparison between $P_{0 t}^{L}$ and $P_{0 t}^{D R}$ amounts to a comparison between $Q_{0 t}^{P}$ and $Q_{0 t}^{D}$ which is worked out as example 7 .
We found in ex. 7 that $P_{0 t}^{D R}=P_{0 t}^{L}$ if $Q_{0 t}^{P}=Q_{0 t}^{P}$ or equivalently

$$
\begin{equation*}
\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{P}}=\frac{\sum \mathrm{q}_{\mathrm{t}} \mathrm{p}_{\mathrm{t}}}{\sum \mathrm{q}_{\mathrm{o}} \mathrm{p}_{\mathrm{t}}}=\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{D}}=\frac{\sum \mathrm{q}_{\mathrm{t}}}{\sum \mathrm{q}_{\mathrm{o}}} \tag{7b}
\end{equation*}
$$

[^2]in which case the covariance vanishes. Given (7b) we see that in fact in the following definitional equation for $P_{0 t}^{D R}=P_{0 t}^{L}$ is true $\frac{\sum q_{o} p_{t}}{\sum q_{t} p_{t}}$
$$
\mathrm{P}_{\mathrm{ot}}^{\mathrm{DR}}=\frac{\sum \mathrm{q}_{\mathrm{t}} \mathrm{p}_{\mathrm{t}}}{\sum \mathrm{q}_{0} \mathrm{p}_{0}}: \frac{\sum \mathrm{q}_{\mathrm{t}}}{\sum \mathrm{q}_{0}}=\frac{\sum \mathrm{q}_{\mathrm{t}} \mathrm{p}_{\mathrm{t}}}{\sum \mathrm{q}_{0} \mathrm{p}_{0}} \frac{\sum \mathrm{q}_{0} \mathrm{p}_{\mathrm{t}}}{\sum \mathrm{q}_{\mathrm{t}} \mathrm{p}_{\mathrm{t}}} \quad \text { using (7b) } \frac{\sum \mathrm{q}_{0}}{\sum \mathrm{q}_{\mathrm{t}}}=\frac{\sum \mathrm{q}_{\mathrm{o}} \mathrm{p}_{\mathrm{t}}}{\sum \mathrm{q}_{\mathrm{t}} \mathrm{p}_{\mathrm{t}}}=\frac{\sum \mathrm{q}_{\mathrm{o}} \mathrm{p}_{\mathrm{t}}}{\sum \mathrm{q}_{o} \mathrm{p}_{0}}=\mathrm{P}_{\mathrm{ot}}^{\mathrm{L}} .
$$

Table 4: Some examples for the model C $\left(\mathrm{y}_{0}=1\right)$

|  | $\mathrm{X}_{0}=\overline{\mathrm{X}}$ | $\mathrm{X}_{\mathrm{t}}$ | $\mathrm{x}_{0}$ | $\mathrm{x}_{\mathrm{t}}$ | $\mathrm{y}_{0}$ | $\mathrm{y}_{\mathrm{t}}$ | $\overline{\mathrm{Y}}$ | $\mathrm{w}_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | $\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{D}}$ | $\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{P}}$ | $\mathrm{q}_{0}$ | $\mathrm{q}_{\mathrm{t}}$ | 1 | $\mathrm{p}_{\mathrm{t}}$ | $\frac{\sum \mathrm{p}_{\mathrm{t}} \mathrm{q}_{0}}{\sum \mathrm{q}_{0}}=\sum \mathrm{p}_{\mathrm{t}} \frac{\mathrm{q}_{0}}{\sum \mathrm{q}_{0}}$ | $\mathrm{q}_{0} / \sum \mathrm{q}_{0}$ |
| 8 | $\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{D}}$ | $\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}}$ | $\mathrm{q}_{0}$ | $\mathrm{q}_{\mathrm{t}}$ | 1 | $\mathrm{p}_{0}$ | $\frac{\sum \mathrm{p}_{0} \mathrm{q}_{0}}{\sum \mathrm{q}_{0}}=\sum \mathrm{p}_{0} \frac{\mathrm{q}_{0}}{\sum \mathrm{q}_{0}}=\tilde{p}_{0}$ | $\mathrm{q}_{0} / \sum \mathrm{q}_{0}$ |
| $9^{*}$ | $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}$ | $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}$ | $\mathrm{p}_{0}$ | $\mathrm{p}_{\mathrm{t}}$ | 1 | $\mathrm{q}_{0}$ | $\frac{\sum \mathrm{p}_{0} \mathrm{q}_{0}}{\sum \mathrm{p}_{0}}=\sum \mathrm{q}_{0} \frac{\mathrm{p}_{0}}{\sum \mathrm{p}_{0}}=\tilde{\mathrm{q}}_{0}$ | $\mathrm{p}_{0} / \sum \mathrm{p}_{0}$ |
| $10^{*}$ | $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}$ | $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}$ | $\mathrm{p}_{0}$ | $\mathrm{p}_{\mathrm{t}}$ | 1 | $\mathrm{q}_{\mathrm{t}}$ | $\frac{\sum \mathrm{p}_{0} \mathrm{q}_{\mathrm{t}}}{\sum \mathrm{q}_{0}}=\sum \mathrm{q}_{\mathrm{t}} \frac{\mathrm{p}_{0}}{\sum \mathrm{p}_{0}}$ | $\mathrm{p}_{0} / \Sigma \mathrm{p}_{0}$ |

* see also examples 11 and 12 respectively

Note that the terms under $\overline{\mathrm{Y}}$ can be viewed as weighted means of prices or quantities, referring either to $t$ or to 0 .
It may also be interesting to compare $P_{0 t}^{D R}$ to $P_{0 t}^{P}$ instead of $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}$. This means that we have to study the ratio $\frac{P_{0 t}^{D R}}{P_{0 t}^{P}}=\frac{Q_{0 t}^{L}}{Q_{0 t}^{D}}$ which is done in example 8 .
The examples 9 and 10 may also be written in analogy to model D (see next table 5). This amounts to interchanging $y_{t}$ and $y_{0}$ and as a consequence interchanging of $X_{0}$ and $X_{t}$. Also the weights $\mathrm{w}_{0}$ and $\overline{\mathrm{Y}}$ are affected when we move from model D to C .

Table 5: Some examples for the model $\mathrm{D}\left(\mathrm{y}_{\mathrm{t}}=1\right)$

|  | $\mathrm{X}_{0}=\overline{\mathrm{X}}$ | $\mathrm{X}_{\mathrm{t}}$ | $\mathrm{x}_{0}$ | $\mathrm{x}_{\mathrm{t}}$ | $\mathrm{y}_{0}$ | $\mathrm{y}_{\mathrm{t}}$ | $\overline{\mathrm{Y}}$ | $\mathrm{w}_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}$ | $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}$ | $\mathrm{p}_{0}$ | $\mathrm{p}_{\mathrm{t}}$ | $\mathrm{q}_{0}$ | 1 | $\frac{\sum \mathrm{p}_{0}}{\sum \mathrm{p}_{0} \mathrm{q}_{0}}$ | $\mathrm{p}_{0} \mathrm{q}_{0} / \sum \mathrm{p}_{0} \mathrm{q}_{0}$ |
| 12 | $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}$ | $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}$ | $\mathrm{p}_{0}$ | $\mathrm{p}_{\mathrm{t}}$ | $\mathrm{q}_{\mathrm{t}}$ | 1 | $\frac{\sum \mathrm{p}_{0}}{\sum \mathrm{p}_{0} \mathrm{q}_{\mathrm{t}}}$ | $\mathrm{p}_{0} \mathrm{q}_{\mathrm{t}} / \sum \mathrm{p}_{0} \mathrm{q}_{\mathrm{t}}$ |

The terms under $\bar{Y}$ can be viewed as weighted means of reciprocal quantities, $1 / q_{0}$ and $1 / q_{t}$ respectively.
As to example 11 and 9 we find in CSW (1980), p. 19 the quite complicated formula (in our notation)

$$
\begin{equation*}
\frac{P_{0 t}^{L}}{P_{0 t}^{D}}=\frac{1+\overline{\operatorname{cov}}\left(p_{t}, q_{0}\right)}{1+\overline{\operatorname{cov}}\left(p_{0}, q_{0}\right)}, \tag{8}
\end{equation*}
$$

using the unweighted covariances $\operatorname{cov}\left(\mathrm{p}_{\mathrm{t}}, \mathrm{q}_{0}\right)=\frac{1}{\mathrm{n}} \sum\left(\mathrm{p}_{\mathrm{t}}-\overline{\mathrm{p}}_{\mathrm{t}}\right)\left(\mathrm{q}_{0}-\overline{\mathrm{q}}_{0}\right)$ and $\operatorname{cov}\left(\mathrm{p}_{0}, \mathrm{q}_{0}\right)$ defined analogously in which both averages, $\overline{\mathrm{p}}$ and $\overline{\mathrm{q}}$ are unweighted averages, while our less complicated formulas only needs one ${ }^{4}$ covariance (between $\mathrm{p}_{\mathrm{t}} / \mathrm{p}_{0}$ and . base period quantities $q_{0}$ ) weighted, however. The covariance in example 9 is

[^3]\[

$$
\begin{align*}
& \sum\left(\frac{\mathrm{p}_{\mathrm{t}}}{\mathrm{p}_{0}}-\mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}\right)\left(\mathrm{q}_{0}-\sum \mathrm{q}_{0} \frac{\mathrm{p}_{0}}{\sum \mathrm{p}_{0}}\right) \frac{\mathrm{p}_{0}}{\sum \mathrm{p}_{0}} \text { and in example } 11  \tag{8a}\\
& \sum\left(\frac{\mathrm{p}_{\mathrm{t}}}{\mathrm{p}_{0}}-\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}\right)\left(\frac{1}{\mathrm{q}_{0}}-\sum \frac{1}{\mathrm{q}_{0}} \frac{\mathrm{p}_{0}}{\sum \mathrm{p}_{0}}\right) \frac{\mathrm{p}_{0} \mathrm{q}_{0}}{\sum \mathrm{p}_{0} \mathrm{q}_{0}} . \tag{8b}
\end{align*}
$$
\]

This shows that there may well exist a number of different formulas for the relationship between the same two price indices. Again in the examples 10 and 12 the CSWD formula for comparing Paasche and Dutot

$$
\begin{equation*}
\frac{\mathrm{P}_{\mathrm{ot}}^{\mathrm{P}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}}=\frac{1+\overline{\operatorname{cov}}\left(\mathrm{p}_{\mathrm{t}}, \mathrm{q}_{\mathrm{t}}\right)}{1+\overline{\operatorname{cov}}\left(\mathrm{p}_{0}, \mathrm{q}_{\mathrm{t}}\right)} \tag{9}
\end{equation*}
$$

based on two unweighted covariances (that is each product $(x-\bar{x})(y-\bar{y})$ is multiplied by $1 / n$ ), while our result is given by either

$$
\begin{align*}
& \sum\left(\frac{p_{t}}{p_{0}}-P_{0 t}^{D}\right)\left(q_{t}-\sum q_{t} \frac{p_{0}}{\sum p_{0}}\right) \frac{p_{0}}{\sum p_{0}} \text { in example } 10 \text { or }  \tag{9a}\\
& \sum\left(\frac{p_{t}}{p_{0}}-P_{0 t}^{p}\right)\left(\frac{1}{q_{t}}-\sum \frac{1}{q_{t}} \frac{p_{0}}{\sum p_{0}}\right) \frac{p_{0} q_{t}}{\sum p_{0} q_{t}} \text { in example } 12 \tag{9b}
\end{align*}
$$

making use of one weighted covariance only. Note the striking resemblance between (9a) and (8a) on the one hand and (9b) and (8b) on the other.
We can also combine one of the formulas (8a) or (8b) to $\sqrt{\frac{P_{0 t}^{L}}{P_{0 t}^{D}}}$ with one of the formulas
 1980; 31 a quite complicated expression using unweighted covariances only, viz.

$$
\begin{equation*}
\frac{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{F}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}}=\sqrt{\frac{1+\overline{\operatorname{cov}}\left(\mathrm{p}_{\mathrm{t}}, \mathrm{q}_{0}\right)}{1+\overline{\operatorname{cov}}\left(\mathrm{p}_{0}, \mathrm{q}_{0}\right)} \cdot \frac{1+\overline{\operatorname{cov}}\left(\mathrm{p}_{\mathrm{t}}, \mathrm{q}_{\mathrm{t}}\right)}{1+\overline{\operatorname{cov}}\left(\mathrm{p}_{0}, \mathrm{q}_{\mathrm{t}}\right)}} \tag{9c}
\end{equation*}
$$

with four $1+\overline{\operatorname{cov}}$ terms involved, rather than only two. Note that the way how (9c) is composed of $p$ and $q$ terms bears some resemblance to $P_{0 t}^{F}=\sqrt{\frac{\sum p_{t} q_{0}}{\sum p_{0} q_{0}} \frac{\sum p_{t} q_{t}}{\sum p_{0} q_{t}}}$.
c) $x_{0}=y_{0}=1$, or $x_{t}=y_{t}=0$ (model $E$ and $F$ respectively)

As an example (see row 13 in table 6 below) we compare the Dutot index $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}=\frac{\sum \mathrm{p}_{\mathrm{t}}}{\sum \mathrm{p}_{0}}$ with the Carli index ${ }^{5}$ given by
$\mathrm{P}_{0 \mathrm{t}}^{\mathrm{C}}=\frac{1}{\mathrm{n}} \sum \frac{\mathrm{p}_{\mathrm{it}}}{\mathrm{p}_{\mathrm{i} 0}}$.
For this reason we set $x_{0}=y_{0}=1, x_{t}=p_{t} / p_{0}$ and $y_{t}=p_{0} / \Sigma p_{0}$. The result is shown in combination with some other comparisons in the following table 6.
Example 13 is particularly easy to understand. As usual $X_{t}=X_{0}$ holds when the covariance vanishes. The relevant covariance here is $\operatorname{cov}=\frac{1}{n} \sum\left(\frac{p_{t}}{p_{0}}-P_{0 t}^{C}\right)\left(\frac{p_{0}}{\sum p_{0}}-\frac{1}{n}\right)=$

[^4]$\frac{1}{n}\left(P_{0 t}^{D}-P_{0 t}^{C}\right)$. When all ratios $\frac{p_{i 0}}{\sum p_{i 0}}$ are equal, viz. $\frac{p_{i 0}}{\sum p_{i 0}}=\frac{1}{n}$ then of course cov $=0$ and $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}=\sum \frac{\mathrm{p}_{\mathrm{t}}}{\mathrm{p}_{0}} \frac{\mathrm{p}_{0}}{\sum \mathrm{p}_{0}}=\sum \frac{\mathrm{p}_{\mathrm{t}}}{\mathrm{p}_{0}} \frac{1}{\mathrm{n}}$ reduces to $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{C}}$.

Table 6: Some examples for the model E
(in all cases $\mathrm{w}_{0}=1 / \mathrm{n}$ )

|  | $\mathrm{X}_{0}=\overline{\mathrm{X}}$ | $\mathrm{X}_{\mathrm{t}}$ | $\mathrm{x}_{0}$ | $\mathrm{x}_{\mathrm{t}}$ | $\mathrm{y}_{0}$ | $\mathrm{yt}_{\mathrm{t}}$ | $\overline{\mathrm{Y}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $13^{*}$ | $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{C}}$ | $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}$ | 1 | $\mathrm{p}_{\mathrm{t}} / \mathrm{p}_{0}$ | 1 | $\mathrm{p}_{0} / \sum \mathrm{p}_{0}$ | $1 / \mathrm{n}$ |
| $14^{*}$ | $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{C}}$ | $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}$ | 1 | $\mathrm{p}_{\mathrm{t}} / \mathrm{p}_{0}$ | 1 | $\mathrm{p}_{0} \mathrm{q}_{0} / \sum \mathrm{p}_{0} \mathrm{q}_{0}$ | $1 / \mathrm{n}$ |
| 15 | $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{C}}$ | $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}$ | 1 | $\mathrm{p}_{\mathrm{t}} / \mathrm{p}_{0}$ | 1 | $\mathrm{p}_{0} \mathrm{q}_{\mathrm{t}} / \sum \mathrm{p}_{0} \mathrm{q}_{\mathrm{t}}$ | $1 / \mathrm{n}$ |

* CSW (1980); p. 20 report the same formula

For CSW (1980), p. 27 there are good reasons to assume a negative correlation (between $p_{t} / p_{0}$ and $\left.p_{0} / \Sigma p_{0}\right)$ in the case of ex. 13 , so for them $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}<\mathrm{P}_{0 \mathrm{t}}^{\mathrm{C}}$ should be fairly general the case.

In a similar vein in example $14 \mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}$ reduces to $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{C}}$ when the covariance cov $=$ $\frac{1}{n} \sum\left(\frac{p_{t}}{p_{0}}-P_{0 t}^{C}\right)\left(\frac{p_{0} q_{0}}{\sum p_{0} q_{0}}-\frac{1}{n}\right)=\frac{1}{n}\left(P_{0 t}^{L}-P_{0 t}^{C}\right)$ vanishes, or put differently, when all base period expenditure shares are equal $(1 / n)^{6}$ in which case of course also $Q_{o t}^{L}=Q_{o t}^{C}$.
Model E may also be used to find some relationships with the unweighted harmonic mean defined by $\left(\mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}}\right)^{-1}=\frac{1}{\mathrm{n}} \sum \frac{\mathrm{p}_{\mathrm{i} 0}}{\mathrm{p}_{\mathrm{it}}}$

Table 6 cont'd. ( $\mathrm{w}_{0}=1 / \mathrm{n}$ )

|  | $\mathrm{X}_{0}=\overline{\mathrm{X}}$ | $\mathrm{X}_{\mathrm{t}}$ | $\mathrm{x}_{0}$ | $\mathrm{x}_{\mathrm{t}}$ | $\mathrm{y}_{0}$ | $\mathrm{y}_{\mathrm{t}}$ | $\overline{\mathrm{Y}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 16 | $1 / \mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}}$ | $1 / \mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}$ | 1 | $\mathrm{p}_{0} / \mathrm{p}_{\mathrm{t}}$ | 1 | $\mathrm{p}_{\mathrm{t}} / \Sigma \mathrm{p}_{\mathrm{t}}$ | $1 / \mathrm{n}=\mathrm{w}_{0}$ |
| 17 | $1 / \mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}}$ | $1 / \mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}$ | 1 | $\mathrm{p}_{0} / \mathrm{p}_{\mathrm{t}}$ | 1 | $\mathrm{p}_{\mathrm{t}} \mathrm{q}_{0}$ | $\Sigma \mathrm{p}_{\mathrm{t}} \mathrm{q}_{0} / \mathrm{n}$ |
| 18 | $1 / \mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}}$ | $1 / \mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}$ | 1 | $\mathrm{p}_{0} / \mathrm{p}_{\mathrm{t}}$ | 1 | $\mathrm{p}_{\mathrm{t}} \mathrm{q}_{\mathrm{t}}$ | $\Sigma \mathrm{p}_{\mathrm{t}} \mathrm{q}_{\mathrm{t}} / \mathrm{n}$ |
| 19 | $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{C}}$ | $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}}$ | 1 | $\mathrm{p}_{\mathrm{t}} / \mathrm{p}_{0}$ | 1 | $\mathrm{p}_{0} / \mathrm{p}_{\mathrm{t}}$ | $\mathrm{P}_{\mathrm{t} 0}^{\mathrm{C}}=1 / \mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}}$ |

In 16 we get $\mathrm{X}_{1} / \mathrm{X}_{0}=\mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}} / \mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}$ and the covariance expressed in full is

$$
\begin{equation*}
\operatorname{cov}=\frac{1}{\mathrm{n}} \sum\left(\frac{\mathrm{p}_{0}}{\mathrm{p}_{\mathrm{t}}}-\frac{1}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}}}\right)\left(\frac{\mathrm{p}_{\mathrm{t}}}{\sum \mathrm{p}_{\mathrm{t}}}-\frac{1}{\mathrm{n}}\right)=\frac{1}{\mathrm{n}}\left(\frac{1}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}}-\frac{1}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}}}\right)=\frac{1}{\mathrm{n}}\left(\frac{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}}-\mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{H} \mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}}}\right) \tag{10}
\end{equation*}
$$

thus cov $<0$ entails $\mathrm{P}_{0}^{\mathrm{H}}<\mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}$. Alternatively with $\mathrm{x}_{\mathrm{t}}=\mathrm{p}_{\mathrm{t}}$ we get $\overline{\mathrm{Y}}=\frac{\sum \mathrm{p}_{\mathrm{t}}}{\mathrm{n}}=\overline{\mathrm{p}}_{\mathrm{t}}$ and therefore cov $=\frac{1}{n} \sum\left(\frac{\mathrm{p}_{0}}{\mathrm{p}_{\mathrm{t}}}-\frac{1}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}}}\right)\left(\mathrm{p}_{\mathrm{t}}-\overline{\mathrm{p}}_{\mathrm{t}}\right)=\overline{\mathrm{p}}_{\mathrm{t}}\left(\frac{1}{\mathrm{P}_{\mathrm{ot}}^{D}}-\frac{1}{\mathrm{P}_{\mathrm{ot}}^{\mathrm{H}}}\right)$.
It may also be interesting to compare Carli to the unweighted harmonic index which is done in example 19. From the general rule $\frac{X_{t}}{X_{0}}=\frac{X_{t}}{\bar{X}}=1+\frac{\text { cov }}{\bar{X} \bar{Y}}$ follows in this case
$\frac{\mathrm{P}_{\mathrm{ot}}^{\mathrm{H}}}{\mathrm{P}_{\mathrm{ot}}^{\mathrm{C}}}=\mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}} \mathrm{P}_{\mathrm{t} 0}^{\mathrm{H}}=1+\frac{\mathrm{P}_{\mathrm{ot}}^{\mathrm{H}}-\mathrm{P}_{\mathrm{ot}}^{\mathrm{C}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{C}}}=\frac{\mathrm{P}_{\mathrm{ot}}^{\mathrm{H}}}{\mathrm{P}_{\mathrm{ot}}^{\mathrm{C}}}<1$.

[^5]This shows (in a quite simple manner) that both, Carli's index as well as the harmonic index fail the time reversal test (as $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}} \mathrm{P}_{\mathrm{t} 0}^{\mathrm{H}}<1$ and $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{C}} \mathrm{P}_{\mathrm{t} 0}^{\mathrm{C}}>1$ ).

Table 7 summarizes the 19 examples (indicating also the model used):
Table 7

|  | Carli | Dutot | Laspeyres | Paasche | Harmonic | Walsh | ME | Drobisch |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Carli | - | 13 E | 14 E | 15 E | 19 E |  |  |  |
| Dutot |  | - | $9 \mathrm{C} / 11 \mathrm{D}$ | $10 \mathrm{C} / 12 \mathrm{D}$ | 16 E |  |  | $6 \mathrm{~A} *$ |
| Lasp. |  |  | - | $1 \mathrm{G} / 5 \mathrm{~A}$ | 17 E | 2 G | 3 G | 7 C |
| Paasche |  |  |  | - | 18 E |  |  | 8 C |
| Harmon. |  |  |  |  | - |  |  |  |
| Walsh |  |  |  |  |  | - | 4 G |  |
| ME |  |  |  |  |  |  | - |  |
| Drobisch |  |  |  |  |  |  |  | - |

* this is example 6a and 6b

It should not be too difficult to fill the gaps.

## 3. More functions of index formulas, e.g. the CSWD-index

We already examined some relations concerning Fisher's ideal index $P_{0 t}^{\mathrm{F}}=\sqrt{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}} \mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}}$ that is the geometric mean of Laspeyres and Paasche and $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{DR} *}$, the arithmetic mean of the same two indices. The following index
(11) $\quad \mathrm{P}_{0 \mathrm{t}}^{\mathrm{CSWD}}=\sqrt{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{C}} \mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}}}=\sqrt{\frac{\sum \mathrm{p}_{\mathrm{it}} / \mathrm{p}_{\mathrm{i}}}{\sum \mathrm{p}_{\mathrm{i} i} / \mathrm{p}_{\mathrm{it}}}}$
is known as index of Carruthers, Selwood, Ward and Dalen (or CSWD-index for short). Obviously $\left(\mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}}\right)^{-1}=\frac{1}{\mathrm{n}} \sum \frac{\mathrm{p}_{\mathrm{io}}}{\mathrm{p}_{\mathrm{it}}}=\mathrm{P}_{\mathrm{t} 0}^{\mathrm{C}}$, or in Fisher's words $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}}$ is the "time antithesis" of $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{C}}$ and vice versa, ${ }^{7}$ so

This means that example 19 enables us to compare a mixed index like $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{CSWD}}$ to one of its components, $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{C}}$ and $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}}$ respectively. The covariance in ex. 19 is given by $\operatorname{cov}=\frac{1}{\mathrm{n}} \sum\left(\frac{\mathrm{p}_{\mathrm{t}}}{\mathrm{p}_{0}}-\mathrm{P}_{0 \mathrm{t}}^{\mathrm{C}}\right)\left(\frac{\mathrm{p}_{0}}{\mathrm{p}_{\mathrm{t}}}-\mathrm{P}_{\mathrm{t} 0}^{\mathrm{C}}\right)=1-\mathrm{P}_{0 \mathrm{t}}^{\mathrm{C}} \mathrm{P}_{\mathrm{t} 0}^{\mathrm{C}}$, and the centered covariance
$\overline{\operatorname{cov}}=\frac{\mathrm{cov}}{\overline{\mathrm{X}} \overline{\mathrm{Y}}}=\frac{1}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{C}} \mathrm{P}_{\mathrm{t} 0}^{\mathrm{C}}}-1$ so that $\frac{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{CSWD}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{C}}}=\sqrt{\frac{1}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{C}} \mathrm{P}_{\mathrm{to}}^{\mathrm{C}}}}$ and $\frac{\mathrm{P}_{\mathrm{ot}}^{\mathrm{CSWD}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}}}=\sqrt{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{C}} \mathrm{P}_{\mathrm{t} 0}^{\mathrm{C}}}$.
Finally it might be interesting to examine how $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{CSWD}}$ is related to $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}$. Using

[^6]$\frac{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{CSWD}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}}=\sqrt{\frac{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{c}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}} \frac{\mathrm{P}_{\mathrm{ot}}^{\mathrm{H}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}}}=\sqrt{\mathrm{f}_{1} \mathrm{f}_{2}}$.
Factor $f_{1}$ can be evaluated using ex. 13 and Factor $f_{2}$ with the help of ex. 16. Interchanging $y_{0}$ and $y_{1}$ in table 6 we get in the case of ex. 13 for $f_{1}$ the centered covariance (using $\overline{\mathrm{p}}_{0}=\sum \mathrm{p}_{0} / \mathrm{n}$ or $\left.\mathrm{n} \overline{\mathrm{p}}_{0}=\sum \mathrm{p}_{0}\right)$
$\overline{\operatorname{cov}}_{(1)}=\sum\left(\frac{\mathrm{p}_{\mathrm{t}} / \mathrm{p}_{0}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}}-1\right)\left(\frac{\overline{\mathrm{p}}_{0}}{\mathrm{p}_{0}}-1\right) \frac{\mathrm{p}_{0}}{\mathrm{n} \overline{\mathrm{p}}_{0}}$,
or $\overline{\operatorname{cov}}_{(1)}=\frac{\mathrm{P}_{\mathrm{ot}}^{\mathrm{C}}}{\mathrm{P}_{\mathrm{ot}}^{\mathrm{D}}}-1=\mathrm{f}_{1}-1$.
We now consider factor $\mathrm{f}_{2}=\mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}} / \mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}$ in a similar manner. For this purpose we are going back to ex. 16 where the relevant covariance is
\[

$$
\begin{equation*}
\operatorname{cov}=\frac{1}{\mathrm{n}} \sum\left(\frac{\mathrm{p}_{0}}{\mathrm{p}_{\mathrm{t}}}-\mathrm{P}_{\mathrm{t} 0}^{\mathrm{C}}\right)\left(\frac{\mathrm{p}_{\mathrm{t}}}{\sum \mathrm{p}_{\mathrm{t}}}-\frac{1}{\mathrm{n}}\right)=\frac{1}{\mathrm{n}}\left(\frac{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}}-\mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}} \mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}}\right) \tag{9c}
\end{equation*}
$$

\]

from which we can easily derive
$\overline{\operatorname{cov}}_{(2)}=\frac{\operatorname{cov}}{\frac{1}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}}} \cdot \frac{1}{\mathrm{n}}}=\sum\left(\frac{\mathrm{p}_{0} / \mathrm{p}_{\mathrm{t}}}{\mathrm{P}_{\mathrm{t} 0}^{\mathrm{C}}}-1\right)\left(\frac{\mathrm{p}_{\mathrm{t}}}{\overline{\mathrm{p}}_{\mathrm{t}}}-1\right) \frac{1}{\mathrm{n}}=\frac{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{D}}}-1=\mathrm{f}_{2}-1$
given the results for $\overline{\mathrm{X}}$ and $\overline{\mathrm{Y}}$ in ex. 16. We now can pull the strands together and conclude

$$
\begin{equation*}
\frac{\mathrm{P}_{\mathrm{ot}}^{\mathrm{CSDD}}}{\mathrm{P}_{\mathrm{ot}}^{\mathrm{D}}}=\sqrt{\left(1+\overline{\operatorname{cov}}_{(1)}\right)\left(1+\overline{\operatorname{cov}}_{(2)}\right)} . \tag{13}
\end{equation*}
$$

In order to compare $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{CSWD}}$ to Fisher's ideal index $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{F}}$ we again proceed in two steps, using ex. 14 for $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}} / \mathrm{P}_{0 \mathrm{t}}^{\mathrm{C}}$ and ex. 18 for $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}} / \mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}}$ which results in

$$
\begin{equation*}
\frac{1}{\mathrm{P}_{0 t}^{H}} \frac{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{CSWD}}}=\sqrt{\frac{1+\frac{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}}{\mathrm{n}} \sum\left(\frac{\mathrm{p}_{\mathrm{t}}}{\mathrm{p}_{0}}-\mathrm{P}_{0 t}^{\mathrm{L}}\right)\left(\frac{\mathrm{p}_{0} \mathrm{q}_{0}}{\sum \mathrm{p}_{0} \mathrm{q}_{0}}-\frac{1}{\mathrm{n}}\right) \frac{1}{\mathrm{n}}}{1+\frac{\overline{\mathrm{p}_{\mathrm{t}} \mathrm{q}_{\mathrm{t}}}}{\mathrm{P}_{0 \mathrm{t}}^{H}}} \sum\left(\frac{\mathrm{p}_{0}}{\mathrm{p}_{\mathrm{t}}}-\frac{1}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}}}\right)\left(\mathrm{p}_{\mathrm{t}} \mathrm{q}_{\mathrm{t}}-\overline{\mathrm{p}_{\mathrm{t}} \mathrm{q}_{\mathrm{t}}}\right)} \frac{1}{\mathrm{n}} \quad \sqrt{\frac{1+\overline{\operatorname{cov}}\left(\frac{\mathrm{p}_{\mathrm{t}}}{\mathrm{p}_{0}}, \mathrm{w}_{0}\right)}{1+\overline{\operatorname{cov}}\left(\frac{\mathrm{p}_{0}}{\mathrm{p}_{\mathrm{t}}}, \mathrm{w}_{\mathrm{t}}\right)}} \tag{15}
\end{equation*}
$$

where $\overline{p_{t} q_{t}}=\frac{1}{n} \sum p_{t} q_{t}$ and $w_{0}=\frac{p_{0} q_{0}}{\sum p_{0} q_{0}}, w_{t}=\frac{p_{t} q_{t}}{\sum p_{t} q_{t}}$, and this is precisely the same result which was derived by CSW (1980), p.31. who only made use of eq. (5) rather than the (generalized) Bortkiewicz theorem as exhibited in figure 1.
A final remark to $\mathrm{P}^{C S W D}$ (or $\sqrt{\mathrm{RH}}$ in the notation of $\operatorname{CSW}$ ) ${ }^{8}$ may be in order: it is well known that the geometric mean of an index and its time antithesis will meet the time reversal test. This applies to $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{CSWD}}=\sqrt{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{C}} \mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}}}$ or to $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{F}}=\sqrt{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}} \mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}}$, but of course it does not apply the arithmeticmean, that is to $\frac{1}{2}\left(\mathrm{P}_{0 \mathrm{t}}^{\mathrm{C}}+\mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}}\right)$ nor to $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{DR} *}=\frac{1}{2}\left(\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}+\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}\right)$.

## 4. Some additional remarks

Finally it appears useful to (once more) emphasize that firstly the relationship between any two index functions can possibly be expressed in a number of different (though after

[^7]second thoughts equivalent) ways and secondly that the "message" of the somewhat abstract equations with covariances might not easily be grasped, and we therefore should give some thoughts to enhance understandability.

1. In Diewert and v. d. Lippe (2010) a number of bias formulas between two indices $\mathrm{X}_{1}$ and $X_{0}$ were derived without reference to Bortkiewicz's theorem. We define
bias $=\left[\mathrm{X}_{1} / \mathrm{X}_{0}\right]-1=\overline{\operatorname{cov}}(\mathrm{x}, \mathrm{y})=\frac{\operatorname{cov}(\mathrm{x}, \mathrm{y})}{\overline{\mathrm{X}} \cdot \overline{\mathrm{Y}}}$
and found some biases between the Drobisch price index $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{DR}}$ and the price indices of Laspeyres (as in our example 7) and Paasche (ex. 8) ${ }^{9}$
It may be useful, to introduce a simplified notation for the covariance ${ }^{10}$ : in our ex. 7 $\operatorname{cov}\left(\mathrm{q}_{\mathrm{t}} / \mathrm{q}_{0}, \mathrm{p}_{\mathrm{t}}, \mathrm{q}_{0} / \Sigma \mathrm{q}_{0}\right)$ denotes our result $\sum\left(\frac{\mathrm{q}_{\mathrm{t}}}{\mathrm{q}_{0}}-\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{D}}\right)\left(\mathrm{p}_{\mathrm{t}}-\tilde{\mathrm{p}}_{\mathrm{t}}^{*}\right) \frac{\mathrm{q}_{0}}{\sum \mathrm{q}_{0}}$ (where $\tilde{\mathrm{p}}_{\mathrm{t}}^{*}$ is defined as $\tilde{\mathrm{p}}_{\mathrm{t}}^{*}=\frac{\sum \mathrm{p}_{\mathrm{t}} \mathrm{q}_{0}}{\sum \mathrm{q}_{0}}$. Now in Diewert and v. d. Lippe we find the following alternative covariances ${ }^{11}$

$$
\begin{aligned}
& \operatorname{cov}\left(\mathrm{p}_{\mathrm{t}}, \mathrm{q}_{\mathrm{t}} / \Sigma \mathrm{q}_{\mathrm{t}}-\mathrm{q}_{0} / \Sigma \mathrm{q}_{0}, 1 / \mathrm{n}\right) \\
& \operatorname{cov}\left(\mathrm{p}_{\mathrm{t}},\left(\mathrm{q}_{0} / \mathrm{q}_{\mathrm{t}}\right) \mathrm{Q}_{0 \mathrm{t}}^{\mathrm{D}}, \mathrm{q}_{\mathrm{t}} / \Sigma \mathrm{q}_{\mathrm{t}}\right) \text { and } \\
& \operatorname{cov}\left(\mathrm{p}_{\mathrm{t}}, \mathrm{q}_{0} / \mathrm{q}_{\mathrm{t}}-1 / \mathrm{Q}_{0 \mathrm{t}}^{\mathrm{D}}, \mathrm{q}_{\mathrm{t}} / \Sigma \mathrm{q}_{\mathrm{t}}\right) .
\end{aligned}
$$

It may bewilder, but all four covariances boil down to the same relationship, and they all can be traced back to Bortkiewicz's theorem ${ }^{12}$ (although they were developed without recourse to this formula). So we not only have a variety of formulas to describe basically the same thing, it may also be difficult to see how they are related to one another.
This of course applies also to our ex. 8 where $P_{0 t}^{D R}$ is compared to $P_{0 t}^{P}$

$$
\operatorname{cov}\left(\mathrm{q}_{\mathrm{t}} / \mathrm{q}_{0}, \mathrm{p}_{0}, \mathrm{q}_{0} / \Sigma \mathrm{q}_{0}\right)=\sum\left(\frac{\mathrm{q}_{\mathrm{t}}}{\mathrm{q}_{0}}-\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{D}}\right)\left(\mathrm{p}_{0}-\tilde{\mathrm{p}}_{0}\right) \frac{\mathrm{q}_{0}}{\sum \mathrm{q}_{0}} ;
$$

this result in can also be expressed as ${ }^{13}$

$$
\begin{aligned}
& \operatorname{cov}\left(p_{0}, q_{t} / \sum q_{t}-q_{0} / \Sigma q_{0}, 1 / n\right), o r^{14} \\
& \operatorname{cov}\left(p_{0}, \frac{q_{t} / \sum q_{t}}{q_{0} / \sum q_{0}}-1, q_{0} / \sum q_{0}\right) \text { and } \\
& \operatorname{cov}\left(p_{0}, q_{t} / q_{0}, p_{0}, q_{0} / \sum q_{0}\right)
\end{aligned}
$$

and they all can be identified as special cases of Bortkiewicz's formula and describe the same relationship, only in slightly different terms.
2. It is certainly a challenge to find good, intuitively appealing interpretations to such results and the underlying equations of the generalized theorem of von Bortkewicz

[^8]which proved so widely applicable. Yet the results of such endeavours attained so far are not very promising. We present some ideas of the Hungarian statistician Pal Köves (1983), who in great detail dealt with Bortkiewicz's formulas (2) and (4), however, not with the generalization of the theorem. Köves introduced the ratio of two price indices $\mathrm{X}_{1} / \mathrm{X}_{0}$ which he called B in the honour of Bortkiewicz. ${ }^{15} \mathrm{He}$ made an attempt to interpret B-1 (what we called "centered covariance") in terms of the elasticities and the slope of a regression of $q_{t} / q_{0}$ (dependent variable) on $p_{t} / p_{0}$ as regressor. It can easily be seen that for example
$$
B=\frac{P_{o t}^{P}}{P_{0 t}^{\mathrm{L}}}=\frac{Q_{0 t}^{P}}{Q_{0 t}^{\mathrm{L}}}, \frac{P_{00 t}^{F}}{P_{0 t}^{\mathrm{L}}}=\sqrt{B}, \frac{P_{0 t}^{D R *}}{P_{0 t}^{L}}=\frac{1}{2}(1+B) \text {, and } \frac{P_{o t}^{M E}}{P_{0 t}^{\mathrm{L}}}=\frac{q+B}{q+1} \quad\left(q=\frac{1}{Q_{0 t}^{L}}\right) .
$$

Another concept, Köves introduced was the "factor quotient index" (Köves 1983; 93) which may be denoted by $\Phi$. It turns out that $\Phi$, defined as the ratio of a price indices and the corresponding quantity index is the same in the case of quite a few index functions: $\Phi=\frac{P_{0 t}^{P}}{Q_{0 t}^{P}}=\frac{P_{0 t}^{L}}{Q_{0 t}^{L}}=\frac{P_{0 t}^{D R}}{Q_{0 t}^{D R}}$ where $Q_{0 t}^{D R *}=\frac{1}{2}\left(Q_{0 t}^{L}+Q_{0 t}^{P}\right)$.

It seems doubtful, however, whether further proceeding along this kind of reasoning will really provide any new insights.
3. In Siegel 1941b we find a presentation of the difference between two linear indices $\mathrm{X}_{1}$ - $X_{0}$ in the form of a determinant. Assume $X_{0}=\sum x_{i} w_{i 0}$ and $X_{t}=\sum x_{i} w_{i t}$ where $x_{i}=$ $\mathrm{p}_{\mathrm{it}} / \mathrm{p}_{\mathrm{i} 0}, \mathrm{w}_{\mathrm{i} 0}=\mathrm{p}_{\mathrm{i} 0} \mathrm{q}_{\mathrm{i} 0} / \Sigma \mathrm{p}_{\mathrm{i} 0} \mathrm{q}_{\mathrm{i} 0}$, and $\mathrm{w}_{\mathrm{it}}=\mathrm{p}_{\mathrm{it}} \mathrm{q}_{\mathrm{it}} / \sum \mathrm{p}_{\mathrm{it}} \mathrm{q}_{\mathrm{it}}$ then
$\left[\begin{array}{ccc}\mathrm{w}_{1 t} & \ldots & \mathrm{w}_{\mathrm{nt}} \\ \mathrm{w}_{10} & \ldots & \mathrm{w}_{\mathrm{nt}}\end{array}\right]\left[\begin{array}{cc}\mathrm{x}_{1} & 1 \\ \vdots & \vdots \\ \mathrm{x}_{\mathrm{n}} & 1\end{array}\right]=\left[\begin{array}{ll}\mathrm{X}_{\mathrm{t}} & 1 \\ \mathrm{X}_{0} & 1\end{array}\right]=\mathbf{P}$ and $\mathrm{X}_{\mathrm{t}}-\mathrm{X}_{0}$ (which is $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}-\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}$ with the $\mathrm{X}_{\mathrm{i}}, \mathrm{w}_{\mathrm{it}}$, and $w_{i 0}$ variable as defined above) is given as determinant $|\mathbf{P}|$. This may be interesting for some further generalizations of Bortkiewicz's theorem.

## References

Carruthers, A. G., Selwood, D. J. and P. W. Ward 1980, Recent Developments in the Retail Prices Index, The Statistician, Vol. 29, No. 1, pp. 1-32 (quoted as CSW (1980))
Dalen, Jörgen 1992, Computing Elementary Aggregates in the Swedish Consumer Price Index, Journal of Official Statistics, Vol. 8, No. 2, pp. 129-147.
Diewert, W. Erwin 1997, Commentary, Review of the Federal Reserve Bank of St. Louis, May/June 1997, pp. 127-138.
Diewert, W. Erwin and Peter von der Lippe 2010, Notes on Unit Value Index Bias, Jahrbücher für Nationalökonomie und Statistik 230/2, pp. 690-708.

Drobisch, Moritz Wilhelm 1871, Ueber einige Entwürfe gegen die in diesen Jahrbüchern veröffentliche neue Methode, die Veränderungen der Waarenpreise und des Geldwerthes zu berechnen, Jahrbücher für Nationalökonomie und Statistik, Vol. 16, pp. 416-427.

Laspeyres, Etienne, 1871, Die Berechnung einer mittleren Warenpreissteigerung, Jahrbücher für Nationalökonomie und Statistik, Vol. 16, pp. 296-314.

Köves, Pal 1983, Index Theory and Economic Reality, Budapest 1983.

[^9]Siegel, Irving H. (1941a), The Difference Between the Paasche and Laspeyres Index-Number Formulas, Journal of the American Statistical Association, Vol. 36, No. 215, pp. 343 350
Siegel, Irving H. (1941b), Further Notes on the Difference Between Index-Number Formulas, Journal of the American Statistical Association Vol. 36, No. 216, pp. 519-524
von Bortkiewicz 1923, Zweck und Struktur einer Preisindexzahl, Nordisk Statistik Tidskrift 2, pp. 369-408
von der Lippe, Peter 2007, Index Theory and Price Statistics, Frankfurt (P. Lang)
von der Lippe, Peter 2010, Price Indices on the Basis of Unit Values, Diskussionsbeitrag aus der Fakultät für Wirtschaftswissenschaften, Universität Duisburg-Essen, Campus Essen Nr. 185


[^0]:    ${ }^{1}$ We henceforth leave out the subscript i to denote commodities over which the summation takes place. See also v. d. Lippe (2007), p. 195 for this particular example.

[^1]:    2 It is another index of Drobisch in addition to the index $P^{D R}$ which will be introduced shortly (eq. 7 below). Drobisch mentioned this index in Drobisch (1871), p. 425. It may be noted in passing that in this paper Drobisch was prepared to accept any kind of weighted arithmetic mean $\alpha \mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}+(1-\alpha) \mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}$, not only $\alpha=1 / 2$. In the Anglo-American literature this index $\mathrm{P}^{\mathrm{DR}}$ is also known as index of Sidgwick - Bowley (Diewert (1997); p. 129).

[^2]:    ${ }^{3}$ The problem is that unit values exist only for a group of homogeneous good. There is no "general" unit value over all goods, for the simple reason that for such a large aggregate die sum of quantities ( $\Sigma q_{t}$ and ( $\Sigma q_{0}$ ) is not defined.

[^3]:    ${ }^{4}$ with base period expenditure shares $\mathrm{p}_{0} \mathrm{q}_{0} / \Sigma \mathrm{p}_{0} \mathrm{q}_{0}$.

[^4]:    5 This index is also known as "Sauerbeck index". Laspeyres and some other authors in his days made extensively use of this formula (and also Sauerbeck's price statistics for British foreign trade). It was only in the $20^{\text {th }}$ century that it became generally known that the formula originated from Giancarlo Carli.

[^5]:    ${ }^{6}$ Already Drobisch was aware of this fact, when he criticized Laspeyres for his formula $P_{0 t}^{L}=\sum p_{t} q_{0} / \sum p_{0} q_{0}$ (see Drobisch (1871); 423). As almost all other economists in these days Laspeyres used the formula $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{C}}$ not knowing that it was "invented" by Carli, and he developed his own formula (of which he never made much use) only in Laspeyres (1871), a paper Drobisch explicitly referred to.

[^6]:    ${ }^{7} \mathrm{P}_{0 \mathrm{t}}^{*}$ is the time antithesis of $\mathrm{P}_{0 \mathrm{t}}$ if $\mathrm{P}_{0 \mathrm{t}}^{*}=\left(\mathrm{P}_{\mathrm{t} 0}\right)^{-1}$ (just like $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}}=\left(\mathrm{P}_{\mathrm{t} 0}^{\mathrm{C}}\right)^{-1}$ ). A geometric mean of a pair of time antithetic indices as for example $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{CSWD}}=\sqrt{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{C}} \mathrm{P}_{0 \mathrm{t}}^{\mathrm{H}}}$ or $\mathrm{P}_{0 \mathrm{t}}^{\mathrm{F}}=\sqrt{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}} \mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}}$ always satisfies the time reversal test

[^7]:    ${ }^{8} \mathrm{R}$ stands for Carli's index

[^8]:    ${ }^{9}$ We refrain from presenting here the corresponding bias- formulas between Drobisch and Laspeyres (according to our example 7)
    ${ }^{10}$ The rule should be $\operatorname{cov}$ ( $x$-variable, $y$-variable, weights).
    ${ }^{11}$ These are equations 22, 25 and 29 in Diewert and v. d. Lippe (2010).
    ${ }^{12}$ I have shown this in v.d.Lippe (2010).
    ${ }^{13}$ Equations 13, 16 and 20 in Diewert and v. d. Lippe (2010).
    ${ }^{14}$ For this we gave the following verbal interpretation: "Thus the Drobisch index will have an upward bias relative to the Paasche index if products $\ldots$ whose quantity shares are growing $\ldots$ are associated with period 0 prices $\ldots$ which are above the arithmetic average of the period 0 prices" (p.693). Note that with weights $1 / \mathrm{n}$ the mean of $p_{i 0}$ prices is $\bar{p}_{t}=\frac{1}{n} \sum p_{i t}$ rather than $\tilde{p}_{t}=\sum p_{i t} q_{i t} / \sum q_{i t}$.

[^9]:    ${ }^{15}$ Thus B is the bias of $\mathrm{X}_{1}$ (relative to $\mathrm{X}_{0}$ ) plus one.

