The Interpretation of Unit Value Indices
 Price- and Unit-Value-Indices in Germany

Peter von der Lippe, Universität Duisburg-Essen
Deutsche Statistische Gesellschaft Jahrestagung (Nürnberg 14. Sept. 2010)

1. Setting the stage
motivation, definitions, terminology
2. Drobisch Index (\mathbf{P}^{D}) and other indices (all-items unit value index) compared to the "normal" Paasche and Laspeyres index
3. "Drobisch-Paasche" or "hybrid Paasche" index compared to the normal Paasche index (shows that difference is resulting from structural changes, and can be explained in terms of covariances using a generalized theorem of L. v. Bortkiewicz)
4. Drobisch-Paasche index and the normal Laspeyres index (interpretation in terms of covariances and the L- and S-effect)
5. Conclusion

1. Setting the Stage 1.1. Introduction and Motivation

- Literature (UVIs cannot replace price indices)

Balk 1994, 1995 (1998), 2005

Diewert 1995 (NBER paper), 2004 etc., in particular 2010
(="Notes on Unit Value Bias", unpublished, Aug. 2010)

Parniczky (1974)

Silver (2007) Do Unit Value Export, Import, and Terms of Trade Indices Represent or Misrepresent Price Indices, IMF Working Paper WP/07/121
von der Lippe 2006 submitted to GER (also "Diskussionsbeiträge...") http://mpra.ub.uni-muenchen.de/5525/1/MPRA_paper_5525.pdf 2010 Ottawa Group revision of a 2009 paper (for the 11th Meeting) http://mpra.ub.uni-muenchen.de/24743/1/MPRA_paper_24743.pdf

1. Setting the Stage 1.1. Introduction and Motivation

1. Setting the Stage 1.2. Definitions and Notation (1)

- One-Stage and Two-Stage Index Compilation (TSC)

Aggregation in

- $\mathrm{k}=1,2, \ldots, \mathrm{~K}$ CNs
- $\mathrm{j}=1,2, \ldots, \mathrm{n}_{\mathrm{k}}$ commodity within a CN
two stages;
$\Sigma \mathrm{n}_{\mathrm{k}}=\mathrm{n}$
(all items)
- prices $\mathrm{p}_{\mathrm{kjt}} \quad$ quantities $\mathrm{q}_{\mathrm{kjt}} \quad \mathrm{t}=0,1$
- Unit values (Durchschnittswerte)

all items

(1) $\tilde{\mathrm{p}}_{\mathrm{t}}=\frac{\sum_{\mathrm{k}} \sum_{\mathrm{j}} \mathrm{p}_{\mathrm{kjt}} \mathrm{q}_{\mathrm{kjt}}}{\sum_{\mathrm{k}} \sum_{\mathrm{j}} \mathrm{q}_{\mathrm{kjt}}}=\frac{\sum_{\mathrm{k}} \sum_{\mathrm{j}} \mathrm{p}_{\mathrm{kjt}} \mathrm{q}_{\mathrm{kjt}}}{\mathrm{Q}_{\mathrm{t}}}=\sum_{\mathrm{k}} \sum_{\mathrm{j}} \mathrm{p}_{\mathrm{kjt}} \frac{\mathrm{q}_{\mathrm{kjt}}}{\mathrm{Q}_{\mathrm{t}}}=\sum_{\mathrm{k}} \sum_{\mathrm{j}} \mathrm{p}_{\mathrm{kjt}} \mathrm{s}_{\mathrm{kjt}}$
for the k-th $\mathbf{C N}$
(2) $\quad \tilde{p}_{k t}=\frac{\sum_{j} \mathrm{p}_{\mathrm{kjt}} \mathrm{q}_{\mathrm{kjt}}}{\sum_{\mathrm{j}} \mathrm{q}_{\mathrm{kjt}}}=\sum_{\mathrm{j}=1}^{\mathrm{n}_{\mathrm{k}}} \mathrm{p}_{\mathrm{kjt}} \frac{\mathrm{q}_{\mathrm{kjt}}}{\mathrm{Q}_{\mathrm{kt}}}=\sum \mathrm{p}_{\mathrm{kjt}} \mathrm{m}_{\mathrm{kjt}}$
quantity share weights

$$
\mathrm{m}_{\mathrm{kjt}} \neq \mathrm{s}_{\mathrm{kjt}}
$$

$$
\text { later (also related to } \mathrm{Q}_{t} \text {) }
$$

$$
\begin{aligned}
& \sigma_{\mathrm{kt}}=\mathrm{Q}_{\mathrm{kl}} / \mathrm{Q}_{\mathrm{t}} \\
& \mathrm{~s}_{\mathrm{kjt}}=\mathrm{m}_{\mathrm{kjt}} \sigma_{\mathrm{kt}}
\end{aligned}
$$

1. Setting the Stage 1.2. Definitions and Notation (2)

- Covariance
$>$ all items

$$
\begin{align*}
& \operatorname{Cov}(\mathrm{x}, \mathrm{y}, \mathrm{w})=\sum \sum\left(\mathrm{x}_{\mathrm{kjt}}-\overline{\mathrm{x}}\right)\left(\mathrm{y}_{\mathrm{kjt}}-\overline{\mathrm{y}}\right)_{\mathrm{w}_{\mathrm{kj}}}= \tag{3}\\
& =\sum_{\text {known as "shift theorem" }}^{\sum \sum \mathrm{x}_{\mathrm{kjt}} \mathrm{y}_{\mathrm{kjt}} \mathrm{w}_{\mathrm{kj}}-\overline{\mathrm{x}} \cdot \overline{\mathrm{y}} \quad \sum_{\mathrm{k}} \sum_{\mathrm{j}} \mathrm{w}_{\mathrm{kj}}=1}
\end{align*}
$$

$>$ k-th CN

$$
\begin{align*}
\operatorname{cov}_{\mathrm{k}}\left(\mathrm{x}, \mathrm{y}, \mathrm{w}^{*}\right)= & \sum_{\mathrm{j}=1}^{\mathrm{n}_{\mathrm{k}}}\left(\mathrm{x}_{\mathrm{kjt}}-\overline{\mathrm{x}}_{\mathrm{k}}\right)\left(\mathrm{y}_{\mathrm{kjt}}-\overline{\mathrm{y}}_{\mathrm{k}}\right) \mathrm{w}_{\mathrm{kj}}^{*} \tag{3a}\\
& \sum_{\mathrm{j}} \mathrm{w}_{\mathrm{kj}}^{*}=1
\end{align*}
$$

1. Setting the Stage 1.3. Terminology (1)

- All-items-index of unit values
(Drobisch [price] index)
(4) $\quad P_{01}^{D}=\frac{\sum_{k} \sum_{j} p_{k j 1} q_{k j 1} / \sum_{k} \sum_{j} q_{k j 1}}{\sum_{k} \sum_{j} p_{k j 0} q_{k j 0} / \sum_{k} \sum_{j} q_{k j 0}}$

$$
=\frac{\mathrm{Q}_{0}}{\mathrm{Q}_{\mathrm{t}}} \frac{\sum_{\mathrm{k}} \sum_{\mathrm{j}} \mathrm{p}_{\mathrm{k} j 1} \mathrm{q}_{\mathrm{kj} 1}}{\sum_{\mathrm{k}} \sum_{\mathrm{j}} \mathrm{p}_{\mathrm{kj} 0} \mathrm{q}_{\mathrm{kj} 0}}=\frac{\mathrm{V}_{01}}{\mathrm{Q}_{1} / \mathrm{Q}_{0}}=\frac{\tilde{\mathrm{p}}_{1}}{\widetilde{\mathrm{p}}_{0}}
$$

This index P^{D} is widely known as "unit value index"

 (better: Drobisch index)In practice P^{D} cannot be compiled due to Q_{0} and Q_{1}
however, Q_{kt} can be meaningfully established, thus also $\tilde{\mathrm{p}}_{\mathrm{k} 1} / \tilde{\mathrm{p}}_{\mathrm{k} 0}$

- There is also a Drobisch quantity index (not less problematic and likewise irrelevant in practice)
(4a) $\mathrm{Q}_{01}^{\mathrm{D}}=\widetilde{\mathrm{Q}}_{01}=\mathrm{Q}_{1} / \mathrm{Q}_{0}$ note that $\mathrm{V}_{01}=\mathrm{P}_{01}^{\mathrm{D}} \widetilde{\mathrm{Q}}_{01}$

1. Setting the Stage 1.3. Terminology (2)

- There is another TSC-index actually compiled in official statistics (e.g. German foreign trade statistics)
(5) $P U_{01}^{P}=\frac{\sum_{k} \tilde{p}_{k 1} Q_{k 1}}{\sum_{k} \tilde{p}_{k 0} Q_{k 1}}=\frac{\sum_{k}^{K} \sum_{j}^{n_{k}} p_{k j 1} q_{k j 1}}{\sum_{k}^{K} Q_{k 1}\left(\sum_{j} \frac{m_{k j 0} q_{k j 0}}{Q_{k 0}}\right)}$

$$
=\frac{\sum_{k}^{K} \sum_{\mathrm{j}}^{\mathrm{n}_{\mathrm{k}}} \mathrm{p}_{\mathrm{kj} 1} \mathrm{q}_{\mathrm{k} 11}}{\sum_{\mathrm{k}}^{\mathrm{K}} \mathrm{Q}_{\mathrm{k} 1}\left(\sum_{\mathrm{j}}^{\mathrm{n}_{\mathrm{k}}} \mathrm{p}_{\mathrm{k} j 0} \mathrm{~m}_{\mathrm{k} j 0}\right)}
$$

This index is also known as "unit value index". It is a TSC-Paasche price index using unit values instead of prices as building blocs (on the first stage).
To avoid confusion with P^{D} how should it be called?

- Drobisch-Paasche
- hybrid Paasche (HP)
- Paasche (price) index of unit-values (PU^{P})
other indices on the basis of unit values
$\mathrm{PU}_{01}^{\mathrm{L}}=\sum \tilde{\mathrm{p}}_{\mathrm{k} 1} \mathrm{Q}_{\mathrm{k} 0} / \sum \tilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{k} 0}=\sum \tilde{\mathrm{p}}_{\mathrm{k} 1} \mathrm{Q}_{\mathrm{k} 0} / \sum \sum \mathrm{p}_{\mathrm{kj} 0} \mathrm{q}_{\mathrm{k} j 0}$
$\mathrm{QU}_{01}^{\mathrm{P}}=\sum \mathrm{Q}_{\mathrm{k} 1} \tilde{\mathrm{p}}_{\mathrm{k} 1} / \sum \mathrm{Q}_{\mathrm{k} 0} \tilde{\mathrm{p}}_{\mathrm{k} 1}$
or $\mathrm{QU}^{\mathrm{L}}, \mathrm{PU}^{\mathrm{F}}, \mathrm{QU}^{\mathrm{F}}$ etc.

1. Setting the Stage 1.4. Indices to be compared (+ next steps in the presentation)

```
- all-items unit value index (= Drobisch index)
    compared with Paasche, Laspeyres (+ Fisher) }\longrightarrow\mathrm{ section 2
```

- PUP index (hybrid Paasche or Paasche index of unit values) compared with Paasche, Laspeyres \longrightarrow section 3 (more relevant as regards official price statistics)
(one-stage-, or pure) Paasche index (6) / ... Laspeyres index (6a) resp.
(6) $P_{0 t}^{P}=\frac{\sum_{k=1}^{K} \sum_{j=1}^{n_{k}} p_{k j 1} q_{k 1}}{\sum_{k=1}^{K} \sum_{j=1}^{n_{k}} p_{k j 0} q_{k j 1}}=\frac{\sum_{k} \tilde{p}_{k 1} Q_{k 1}}{\sum_{k} \sum_{j} p_{k j 0} q_{k j 1}}$

$$
P_{0 \mathrm{t}}^{\mathrm{L}}=\frac{\sum_{\mathrm{k}=1}^{\mathrm{K}} \sum_{\mathrm{j}=1}^{\mathrm{n}_{\mathrm{k}}} \mathrm{p}_{\mathrm{kjt}} \mathrm{q}_{\mathrm{k} 0}}{\sum_{\mathrm{k}=1}^{\mathrm{K}} \sum_{\mathrm{j}=1}^{\mathrm{n}_{\mathrm{k}}} \mathrm{p}_{\mathrm{kj} 0} \mathrm{q}_{\mathrm{k} j 0}}=\frac{\sum_{\mathrm{k}} \sum_{{ }_{\mathrm{j}}} \mathrm{p}_{\mathrm{kjt}} \mathrm{q}_{\mathrm{k} j 0}}{\sum_{\mathrm{k}} \tilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{k} 0}}
$$

in all comparisons a covariance plays a major part
$P U_{01}^{P}=\sum \tilde{p}_{k 1} Q_{k 1} /$ den. $\quad P U_{01}^{L}=$ num. $/ \sum \tilde{p}_{k 0} Q_{k 0}$
P and PU indices have numerator or denominator in common

2. Drobisch index ${ }^{\mathrm{PD}}$ and other indices 2.1 Aggregation problems

- $\mathbf{P}^{\mathbf{D}}$ is not simply a weighted mean of unit-value-relatives (as PU^{P} and PU^{L}) much less a mean of price relatives (by contrast to P^{L} and P^{P} which are weighted means of price-relatives)

$$
\text { (7) } \mathrm{P}_{01}^{\mathrm{D}}=\sum_{\mathrm{k}} \frac{\tilde{\mathrm{p}}_{\mathrm{k} 1}}{\tilde{\mathrm{p}}_{\mathrm{k} 0}}\left(\frac{\tilde{\mathrm{p}}_{\mathrm{k} 0} \sigma_{\mathrm{k} 1}}{\sum_{\mathrm{k}} \tilde{\mathrm{p}}_{\mathrm{k} 0} \sigma_{\mathrm{k} 0}}\right) \quad \begin{aligned}
& \text { (7a) } \sigma_{\mathrm{kt}}=\mathrm{Q}_{\mathrm{kt}} / \sum_{\mathrm{k}} \mathrm{Q}_{\mathrm{kt}}=\mathrm{Q}_{\mathrm{kt}} / \mathrm{Q}_{\mathrm{t}} \\
& \text { sum of weights } \neq 1
\end{aligned}
$$

- however, P^{P} and P^{L} are means of sub-indices (8)

$$
\mathrm{P}_{\mathrm{ot}}^{\mathrm{p}}=\frac{\sum_{\mathrm{k}} \sum_{\mathrm{j}} \mathrm{p}_{\mathrm{k} j} \mathrm{q}_{\mathrm{k} 1}}{\sum_{\mathrm{k}} \sum_{\mathrm{j}} \mathrm{p}_{\mathrm{k} j 0} \mathrm{q}_{\mathrm{k} j 1}}=\sum_{\mathrm{k}} \mathrm{P}_{01}^{\mathrm{P}(\mathrm{k})} \frac{\sum_{\mathrm{j}} \mathrm{p}_{\mathrm{k} j} \mathrm{q}_{\mathrm{k} 1}}{\sum_{\mathrm{k}} \sum_{\mathrm{j}} \mathrm{p}_{\mathrm{kj} 0} \mathrm{q}_{\mathrm{k} 1}}
$$

$$
\mathrm{P}_{01}^{\mathrm{P}(\mathrm{k})}=\frac{\sum_{\mathrm{j}} \mathrm{p}_{\mathrm{kjj}} \mathrm{q}_{\mathrm{kj} 1}}{\sum_{\mathrm{j}} \mathrm{p}_{\mathrm{kj} 1} \mathrm{q}_{\mathrm{kj1}}} \quad \begin{aligned}
& \text { in a simi- } \\
& \text { lar vein }
\end{aligned} \quad \text { (8a) } \quad \mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}=\sum_{\mathrm{k}} \mathrm{P}_{01}^{\mathrm{L}(\mathrm{k})} \frac{\sum_{\mathrm{j}} \mathrm{p}_{\mathrm{kj} 0} \mathrm{q}_{\mathrm{k} 0}}{\sum_{\mathrm{k}} \sum_{\mathrm{j} j} \mathrm{p}_{\mathrm{kj} 0} \mathrm{q}_{\mathrm{k} 0}}
$$

Results found for "all-item" or "low level" P^{D} indices (sec. 2) cannot simply be translated into two-stage $\mathrm{PU}^{\mathrm{P}} / \mathrm{PU}^{\mathrm{L}}$ indices (sec. 3), and the PU^{P} is not simply a more disaggregated variant of the Drobisch index P^{D}.
2. Drobisch index P^{D} and Paasche 2.2 covariance expressions (1)

- Three Drobisch-Paasche biases (according to Diewert (2010))

1. base period prices and change of quantity structure
(9) $\frac{\mathrm{P}_{01}^{\mathrm{D}}}{\mathrm{P}_{01}^{\mathrm{P}}}-1=\frac{\mathrm{n}}{\tilde{\mathrm{p}}_{0}} \cdot \operatorname{Cov}\left(\mathrm{p}_{\mathrm{k} 0}, \mathrm{~s}_{\mathrm{kj} 1}-\mathrm{s}_{\mathrm{kj} 0}, 1 / \mathrm{n}\right) \quad \begin{aligned} & \text { "unweighted" (= equal } \\ & \text { weights } 1 / \mathrm{n})\end{aligned}$ the relevant covariance is
$\operatorname{Cov}(1)=\sum_{\mathrm{k}} \sum_{\mathrm{j}}\left(\mathrm{p}_{\mathrm{k} j 0}-\overline{\mathrm{p}}_{0}\right)\left(\left\{\mathrm{s}_{\mathrm{kj} 1}-\mathrm{s}_{\mathrm{kj} 0}\right\}-0\right) \frac{1}{\mathrm{n}}$
unweighted mean of $\mathrm{s}_{\mathrm{kj} 1}-\mathrm{s}_{\mathrm{kj} 0}$ is 0 and of $\mathrm{p}_{\mathrm{kj} 0}$ is $\overline{\mathrm{p}}_{0}=\sum \sum \mathrm{p}_{\mathrm{k} j} / \mathrm{n}$

- conditions for vanishing bias

C1 all base-period prices equal
C 2 quantity shares s remain constant (then also $\mathrm{P}^{\mathrm{D}}=\mathrm{P}^{\mathrm{L}}=\mathrm{P}^{\mathrm{P}}=\mathrm{P}^{\mathrm{F}}$)
C3 zero-covariance

2. Drobisch index P^{D} and Paasche 2.2 covariance expressions (2)

2. base period prices and growth rates of quantity shares
(10) $\frac{\mathrm{P}_{01}^{\mathrm{D}}}{\mathrm{P}_{01}^{\mathrm{p}}}-1=\frac{\operatorname{Cov}\left(\mathrm{p}_{\mathrm{k} j}, \mathrm{G}_{\mathrm{kj}}, \mathrm{s}_{\mathrm{kj} j}\right)}{\tilde{\mathrm{p}}_{0}}$ weights are base period $\mathrm{G}_{\mathrm{kj}}=\mathrm{s}_{\mathrm{kj} 1} / \mathrm{s}_{\mathrm{kj} 0}-1 \rightarrow \sum \sum \mathrm{~s}_{\mathrm{kj}} \frac{\mathrm{s}_{\mathrm{k} j}}{\mathrm{~s}_{\mathrm{kj}}}=1 \rightarrow \sum \sum \mathrm{~s}_{\mathrm{k} j 0} \mathrm{G}_{\mathrm{kj} 0}=0 \quad \sum \sum \mathrm{~s}_{\mathrm{kj} 0} \mathrm{p}_{\mathrm{kj0}}=\tilde{\mathrm{p}}_{0}$ the relevant covariance therefore is

$$
\operatorname{Cov}(2)=\sum_{\mathrm{k}} \sum_{\mathrm{j}}\left(\mathrm{p}_{\mathrm{k} j 0}-\tilde{\mathrm{p}}_{0}\right)\left(\mathrm{G}_{\mathrm{kj}}-0\right) \cdot \mathrm{s}_{\mathrm{kj} 0}
$$

Condition C 1 amounts here to $\mathrm{p}_{\mathrm{k} 0}=\overline{\mathrm{p}}_{0}=\tilde{\mathrm{p}}_{0} \forall \mathrm{k}, \mathrm{j}$ also C 2 is the same

3. base period prices and change of quantities $\leftarrow \leftarrow$| this is the formula |
| :--- |
| of my "S-effect" |

 $\begin{aligned} & \text { the relevant covariance } \\ & \text { now is }\end{aligned} \operatorname{Cov}(3)=\sum_{\mathrm{k}} \sum_{\mathrm{j}}\left(\mathrm{p}_{\mathrm{k} j 0}-\tilde{\mathrm{p}}_{0}\right)\left(\mathrm{q}_{\mathrm{k} 1} / \mathrm{q}_{\mathrm{k} j 0}-\widetilde{\mathrm{Q}}_{01}\right) \cdot \mathrm{s}_{\mathrm{k} j 0}$

2. Drobisch index P^{D} and Paasche 2.2 covariance expressions (3)

Diewert's three covariance expressions are closely related. Using $\frac{\mathrm{q}_{\mathrm{kji}}}{\mathrm{q}_{\mathrm{kj} 0}}=\left(\mathrm{G}_{\mathrm{kj}}+1\right) \tilde{\mathrm{Q}}_{01}$ and the shift theorem we get

$$
\begin{aligned}
& \operatorname{Cov}(2)=\sum \sum \mathrm{p}_{\mathrm{kj} 0} \mathrm{G}_{\mathrm{kj}} \mathrm{~s}_{\mathrm{kj} 0}-\tilde{\mathrm{p}}_{0} \cdot 0=\sum \sum \mathrm{p}_{\mathrm{kj} 0} \mathrm{G}_{\mathrm{kj}} \mathrm{~s}_{\mathrm{kj} 0} \\
& \operatorname{Cov}(3)=\sum \sum \mathrm{p}_{\mathrm{k} j 0} \frac{\mathrm{q}_{\mathrm{kj} 1}}{\mathrm{q}_{\mathrm{k} j 0}} \mathrm{~s}_{\mathrm{kj} 0}-\tilde{\mathrm{p}}_{0} \tilde{\mathrm{Q}}_{01} \\
& =\widetilde{\mathrm{Q}}_{01} \sum \sum \mathrm{p}_{\mathrm{k} j 0} \mathrm{G}_{\mathrm{kj}} \mathrm{~s}_{\mathrm{kjo}}+\tilde{\mathrm{Q}}_{01} \sum \sum \mathrm{p}_{\mathrm{k} j \mathrm{o}} \mathrm{k}_{\mathrm{kj0}}-\tilde{\mathrm{Q}}_{01} \tilde{\mathrm{p}}_{0} \underset{\text { since }}{\text { and }} \sum \sum \mathrm{s}_{\mathrm{kj0}} \mathrm{p}_{\mathrm{kj} 0}=\tilde{\mathrm{p}}_{0}
\end{aligned}
$$

we get $\frac{\operatorname{Cov}(3)}{\tilde{\mathrm{Q}}_{01}}=\operatorname{Cov}(2) \quad$ and therefore

$$
\begin{array}{cc}
\frac{\mathrm{P}_{01}^{\mathrm{D}}}{\mathrm{P}_{01}^{\mathrm{P}}}-1=\frac{\operatorname{Cov}\left(\mathrm{p}_{\mathrm{kj} 0}, \mathrm{G}_{\mathrm{kj}}, \mathrm{~s}_{\mathrm{kj} 0}\right)}{\tilde{\mathrm{p}}_{0}}=\frac{\operatorname{Cov}\left(\mathrm{p}_{\mathrm{kj} 0}, \mathrm{q}_{\mathrm{kj} 1} / \mathrm{q}_{\mathrm{kj} 0}, \mathrm{~s}_{\mathrm{kj} 0}\right)}{\tilde{\mathrm{p}}_{0} \widetilde{\mathrm{Q}}_{01}} & \begin{array}{l}
\text { basically the } \\
\text { formulas tell } \\
\text { the same story }
\end{array} \\
\text { eq. } 11(\operatorname{Cov}(.2 .)) & \text { eq. } 12(\operatorname{Cov}(.3 .))
\end{array}
$$

2. Drobisch index P^{D} and Laspeyres 2.2 covariance expressions (4)

- Three Drobisch-Laspeyres biases (according to Diewert (2010))

1. current period prices and change of quantity structure
(12) $\frac{\mathrm{P}_{01}^{\mathrm{D}}}{\mathrm{P}_{01}^{\mathrm{L} .}}-1=\frac{\mathrm{n} \cdot \operatorname{Cov}\left(\mathrm{p}_{\mathrm{kj1}}, \mathrm{~s}_{\mathrm{kj1}}-\mathrm{s}_{\mathrm{kj} 0}, 1 / \mathrm{n}\right)}{\sum \sum \mathrm{p}_{\mathrm{kj} 1} \mathrm{~s}_{\mathrm{kj} 0}}$
counterpart to eq. 10 and $\operatorname{Cov}(.1$.
here also unweighted
note: a hybrid denominator, neither $\tilde{\mathrm{p}}_{0}=\sum \sum \mathrm{s}_{\mathrm{kj} 0} \mathrm{p}_{\mathrm{kj} 0}$ nor $\tilde{\mathrm{p}}_{1}=\sum \sum \mathrm{s}_{\mathrm{kj} 1} \mathrm{p}_{\mathrm{kj} 1}$ the relevant covariance now is

$$
\operatorname{Cov}\left(1^{*}\right)=\sum_{\mathrm{k}} \sum_{\mathrm{j}}\left(\mathrm{p}_{\mathrm{k} j 1}-\overline{\mathrm{p}}_{1}\right)\left(\mathrm{s}_{\mathrm{kj} 1}-\mathrm{s}_{\mathrm{kj} 0}\right) \frac{1}{\mathrm{n}} \quad \text { note } \quad \begin{aligned}
& \overline{\mathrm{p}}_{1}=\sum \sum \mathrm{p}_{\mathrm{kj} 1} / \mathrm{n} \\
& \sum \sum\left(\mathrm{~s}_{\mathrm{k} j 1}-\mathrm{s}_{\mathrm{kj} 0}\right) / \mathrm{n}=0
\end{aligned}
$$

- conditions for vanishing bias

C 1 * all current-period prices equal (C 1 : base period prices)
$\mathrm{C} 2 *=\mathrm{C} 2$ quantity shares remain constant (then $\mathrm{P}^{\mathrm{D}}=\mathrm{P}^{\mathrm{L}}=\mathrm{P}^{\mathrm{P}}=\mathrm{P}^{\mathrm{F}}$)
C3 again: zero-covariance

2. Drobisch index P^{D} and Laspeyres 2.2 covariance expressions (5)

2. current period prices and growth rates of reciprocal quantity shares
(13) $\frac{\mathrm{P}_{01}^{\mathrm{L}}}{\mathrm{P}_{01}^{\mathrm{D}}}-1=\frac{\operatorname{Cov}\left(\mathrm{p}_{\mathrm{kj1}}, \Gamma_{\mathrm{kj}}, \mathrm{S}_{\mathrm{kj} 1}\right)}{\widetilde{\mathrm{p}}_{1}} \quad \begin{aligned} & \text { counter part to eq. } 11 \text { and } \operatorname{Cov}(.2 .) \\ & \begin{array}{l}\text { note: } \mathrm{P}^{\mathrm{L}} / \mathrm{P}^{\mathrm{D}}-1 \text { whereas in (11) } \mathrm{P}^{\mathrm{D} / \mathrm{P}^{\mathrm{P}}-1} \\ \text { inverse relation of }(14) \text { does not make sense }\end{array}\end{aligned}$
where $\quad \Gamma_{\mathrm{kj}}=\mathrm{s}_{\mathrm{kj} 0} / \mathrm{s}_{\mathrm{kj} 1}-1$ and $\sum \sum \Gamma_{\mathrm{kj}} \mathrm{s}_{\mathrm{kj} 1}=0$
Covariance $\operatorname{Cov}\left(.2^{*}\right.$.)
$\operatorname{Cov}\left(2^{*}\right)=\sum_{\mathrm{k}} \sum_{\mathrm{j}}\left(\mathrm{p}_{\mathrm{kj} 1}-\tilde{\mathrm{p}}_{1}\right)\left(\mathrm{s}_{\mathrm{kj} 0} / \mathrm{s}_{\mathrm{k} 11}-1\right) \cdot \mathrm{s}_{\mathrm{kj} 1}=\sum_{\mathrm{k}} \sum_{\mathrm{j}}\left(\mathrm{p}_{\mathrm{kj} 1}-\tilde{\mathrm{p}}_{1}\right)\left(\Gamma_{\mathrm{kj}}\right) \cdot \mathrm{s}_{\mathrm{k} 1}$
compare this covariance to
$\operatorname{Cov}(2)=\sum_{\mathrm{k}} \sum_{\mathrm{j}}\left(\mathrm{p}_{\mathrm{kj} 0}-\tilde{\mathrm{p}}_{0}\right)\left(\mathrm{G}_{\mathrm{kj}}-0\right) \cdot \mathrm{s}_{\mathrm{kj} 0}$
where $\mathrm{G}_{\mathrm{kj}}=\mathrm{s}_{\mathrm{kj} 1} / \mathrm{s}_{\mathrm{kj0}}-1$ and $\sum \sum \mathrm{s}_{\mathrm{kj0}} \mathrm{G}_{\mathrm{kj0}}=0$

2. Drobisch index P^{D} and Laspeyres 2.2 covariance expressions (6)

3. current period prices and reciprocal change of quantities
(14) $\frac{\mathrm{P}_{01}^{\mathrm{L}}}{\mathrm{P}_{01}^{\mathrm{D}}}-1=\frac{\operatorname{Cov}\left(\mathrm{p}_{\mathrm{kj} 1}, \mathrm{q}_{\mathrm{kj}} / \mathrm{q}_{\mathrm{kj1}}, \mathrm{~s}_{\mathrm{kj1}}\right)}{\tilde{\mathrm{p}}_{1}\left(\widetilde{\mathrm{Q}}_{01}\right)^{-1}} \quad \begin{aligned} & \text { counterpart to eq. } \\ & 12 \text { and } \operatorname{Cov}(3 .)\end{aligned}$
compare this covariance

$$
\begin{aligned}
& \quad \operatorname{Cov}\left(3^{*}\right)=\sum_{\mathrm{k}} \sum_{\mathrm{j}}\left(\mathrm{p}_{\mathrm{k} j 1}-\tilde{\mathrm{p}}_{1}\right)\left(\mathrm{q}_{\mathrm{k} j 0} / \mathrm{q}_{\mathrm{k} j 1}-\left(\tilde{\mathrm{Q}}_{01}\right)^{-1}\right) \cdot \mathrm{s}_{\mathrm{k} j 1} \\
& \text { to } \quad \operatorname{Cov}(3)=\sum_{\mathrm{k}} \sum_{\mathrm{j}}\left(\mathrm{p}_{\mathrm{k} j 0}-\tilde{\mathrm{p}}_{0}\right)\left(\mathrm{q}_{\mathrm{k} 1} / \mathrm{q}_{\mathrm{k} j 0}-\tilde{\mathrm{Q}}_{01}\right) \cdot \mathrm{s}_{\mathrm{k} j 0}
\end{aligned}
$$

Note: we not only have reciprocal terms $\mathrm{q}_{\mathrm{kj} 0} / \mathrm{q}_{\mathrm{kj}}$, or Γ rather than G , we also study $\mathrm{P}^{\mathrm{L}} / \mathrm{P}^{\mathrm{D}}-1$ (unlike $\mathrm{P}^{\mathrm{D}} / \mathrm{P}^{\mathrm{P}}-1$). After a digression: part 3: the practically more important study of indices for TSC (two-stage-compilations of index numbers)

Digression on axiomatics: The Drobisch index violates

- commensurability
 - proportionality (by implication: identity)
 - mean value property (cf. eq. 8 slide 10)

however P^{D} is able to pass the time reversal test

Another Digression

Symmetry in formulas for bias may be due to the time "antithetic"
(Fisher) relation between Laspeyres and Paasche
(15) $\mathrm{V}_{01}=\frac{\sum \sum \mathrm{p}_{1} \mathrm{q}_{1}}{\sum \sum \mathrm{p}_{0} \mathrm{q}_{0}}=\sum \sum\left(\frac{\mathrm{p}_{1}}{\mathrm{p}_{0}}-\mathrm{P}_{01}^{\mathrm{L}}\right)\left(\frac{\mathrm{q}_{1}}{\mathrm{q}_{0}}-\mathrm{Q}_{01}^{\mathrm{L}}\right) \cdot \mathrm{s}_{\mathrm{kj} 0}+\mathrm{P}_{01}^{\mathrm{L}} \mathrm{Q}_{01}^{\mathrm{L}} \quad \begin{aligned} & \text { covariance in the } \\ & \text { theorem of } \\ & \text { L. v. Bortkiewicz }\end{aligned}$
(15a) $\frac{1}{\mathrm{~V}_{01}}=\frac{\sum \sum \mathrm{p}_{0} \mathrm{q}_{0}}{\sum \sum \mathrm{p}_{1} \mathrm{q}_{1}}=\sum \sum\left(\frac{\mathrm{p}_{0}}{\mathrm{p}_{1}}-\frac{1}{\mathrm{P}_{01}^{\mathrm{P}}}\right)\left(\frac{\mathrm{q}_{0}}{\mathrm{q}_{1}}-\frac{1}{\mathrm{Q}_{01}^{\mathrm{P}}}\right) \cdot \mathrm{s}_{\text {kj1 }}+\frac{1}{\mathrm{P}_{01}^{\mathrm{P}}} \frac{1}{\mathrm{Q}_{01}^{\mathrm{P}}}$

Paasche indices P_{01}			
low level (first stage) goods	$\begin{aligned} & \mathrm{p}_{\mathrm{i} 1}=\mathrm{p}_{\mathrm{kj} 1(\mathrm{i}=1, \ldots, \mathrm{n})} \\ & \mathrm{p}_{\mathrm{i} 0}=\mathrm{p}_{\mathrm{kj} 0} \end{aligned}$	\downarrow	
group of goods (CN)	\downarrow	$\tilde{\mathrm{p}}_{\mathrm{kt}}=\frac{\sum_{\mathrm{j}} \mathrm{p}_{\mathrm{kjt}} \mathrm{q}_{\mathrm{kjt}}}{\sum_{\mathrm{j}} \mathrm{q}_{\mathrm{kjt}}} \mathrm{t}=0,1$	
second stage (weights)	$\mathrm{q}_{\mathrm{kj} 1}$	$\mathrm{Q}_{\mathrm{k} 1}=\Sigma \mathrm{q}_{\mathrm{kj} 1}$	or -Paasche index
Index	$\mathrm{P}_{0 \mathrm{t}}^{\mathrm{p}}=\frac{\sum_{\mathrm{k}} \tilde{\mathrm{p}}_{\mathrm{k} 1} \mathrm{Q}_{\mathrm{k} 1}}{\sum_{\mathrm{k}} \sum_{\mathrm{j}} \mathrm{p}_{\mathrm{k} j 0} \mathrm{q}_{\mathrm{kj} 1}}$	$\mathrm{PU}_{01}^{\mathrm{P}}=\frac{\sum_{\mathrm{k}} \tilde{\mathrm{p}}_{\mathrm{k} 1} \mathrm{Q}_{\mathrm{k} 1}}{\sum_{\mathrm{k}} \widetilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{k} 1}}$	of unit values - unit value index
name	(true) Paasche	Drobisch-Paasche -	
$\sum \tilde{\mathrm{p}}_{\mathrm{k} 1} \mathrm{Q}_{\mathrm{k} 1}=\sum \sum \mathrm{p}_{\mathrm{kjt}} \mathrm{q}_{\mathrm{kjt}}$			the preferred name Paasche (price) index of unit values \Rightarrow

Price indices based on

3. Drobisch-Paasche PU ${ }^{\mathrm{P}}$ index 3.1 Introduction: some important facts (2)

1. PU^{P} is a weighted mean of unit-value-relatives, P^{D} is not

$$
\mathrm{PU}_{01}^{\mathrm{P}}=\sum_{\mathrm{k}} \frac{\tilde{\mathrm{p}}_{\mathrm{k} 1}}{\tilde{\mathrm{p}}_{\mathrm{k} 0}} \frac{\tilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{k} 1}}{\sum_{\mathrm{k}} \tilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{k} 1}}=\sum_{\mathrm{k}} \frac{\tilde{\mathrm{p}}_{\mathrm{k} 1}}{\tilde{\mathrm{p}}_{\mathrm{k} 0}} \frac{\tilde{\mathrm{p}}_{\mathrm{k} 0} \sigma_{\mathrm{k} 1}}{\sum_{\mathrm{k}} \tilde{\mathrm{p}}_{\mathrm{k} 0} \sigma_{\mathrm{k} 1}}
$$

however (7) $\quad P_{01}^{D}=\sum_{k} \frac{\tilde{p}_{k 1}}{\tilde{p}_{k 0}}\left(\frac{\tilde{\mathrm{p}}_{k 0} \sigma_{k 1}}{\sum_{k} \tilde{\mathrm{p}}_{\mathrm{k} 0} \sigma_{\mathrm{k} 0}}\right)$
P^{D} is much less a mean of price relatives PU^{P} is not simply a Drobisch index P^{D} on the basis of more homogeneous sub-aggregates
2. PU^{P} is a mean of unit-value-relatives, while P^{P} is a mean of price relatives. Properties of unit value ratios as opposed price relatives (ratios of prices)

unless the structure of quantities within each CN remains constant so that $\mathrm{m}_{\mathrm{kj} 1}=\mathrm{m}_{\mathrm{kj} 0}$ weights $\quad \mathrm{p}_{\mathrm{k} 0} \mathrm{q}_{\mathrm{kj} 1} / \widetilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{k} 1}$ add up to (16a) $\mathrm{Q}_{01}^{\mathrm{L}(\mathrm{k})} / \widetilde{\mathrm{Q}}_{01}^{\mathrm{k}}=\mathrm{S}_{01}^{\mathrm{k}} \longleftarrow$ for the S^{k} terms
Furthermore ratios of unit values violate proportionality see eq. (20) (hence also identity) and commensurability

weighted arithmetic mean of	yes	no
price relatives $\mathrm{p}_{\mathrm{kj} 1} / \mathrm{p}_{\mathrm{kj} 0}$	"normal" Paasche ${ }^{P}$ (or Laspeyres ${ }^{\mathrm{P}}{ }^{\mathrm{L}}$ all price indices	ratios of unit values (thus also PU^{P} and PU^{L}) unless $\sum_{\mathrm{j}} \frac{\mathrm{p}_{\mathrm{k} 0} \mathrm{~m}_{\mathrm{kj} 1}}{\sum_{\mathrm{j}} \mathrm{p}_{\mathrm{k} j 0} \mathrm{~m}_{\mathrm{k} j 0}}=\mathrm{S}_{01}^{\mathrm{k}}=1$ (that is no structural component) Drobisch index is not a mean of price relatives
ratios of unit values	PU^{P} and PU^{L} (all indices of unit values) but not "normal" price indices	P^{P} is not a mean of ratios of unit values $\mathrm{P}_{01}^{\mathrm{P}}=\sum_{\mathrm{k}} \frac{\widetilde{\mathrm{p}}_{\mathrm{k} 1}}{\tilde{\mathrm{p}}_{\mathrm{k} 0}} \frac{\tilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{k} 1}}{\sum_{\mathrm{k}} \sum_{\mathrm{j}} \mathrm{p}_{\mathrm{k} j 0} \mathrm{q}_{\mathrm{k} 1}}$ unless sum of weights is $\mathrm{QU}^{\mathrm{L}} / \mathrm{Q}^{\mathrm{L}}=1 / \mathrm{S}=1$ (again: if there is no structural component) Drobisch index is not a mean of ratios of unit values either

3. Two-stage Paasche index PU ${ }^{\mathrm{P}}$ (Drobisch-Paasche, UVI) 3.2 PU^{P} and P^{P}

- Note: there are two PU indices, PU^{P} and PU^{L}, but only one Drobisch Index (one-stage or all-items unit value index) P^{D}.
- for practical reasons (German foreign trade statistic) in what follows we consider only PU^{P} (we don't compare PU^{L} to P^{L})
PU^{P} compared to P^{P}
$\mathrm{PU}_{01}^{\mathrm{P}}=\frac{\sum_{\mathrm{k}} \tilde{\mathrm{p}}_{\mathrm{k} 1} \mathrm{Q}_{\mathrm{k} 1}}{\sum_{\mathrm{k}} \tilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{k} 1}}=\frac{\sum \widetilde{\mathrm{p}}_{\mathrm{k} 1} \sigma_{\mathrm{k} 1}}{\sum \tilde{\mathrm{p}}_{\mathrm{k} 0} \sigma_{\mathrm{k} 1}}$
(17) $\frac{\mathrm{PU}_{01}^{\mathrm{P}}}{\mathrm{P}_{01}^{\mathrm{P}}}-1=\frac{\sum_{\mathrm{k}} \sum_{\mathrm{j}} \mathrm{p}_{\mathrm{k} j} \mathrm{q}_{\mathrm{k} 11}}{\sum_{\mathrm{k}} \widetilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{k} 1}}-1$

$$
=\frac{\sum_{\mathrm{k}} \mathrm{Q}_{\mathrm{k} 1} \sum_{\mathrm{j}} \mathrm{p}_{\mathrm{kj} 0}\left(\mathrm{~m}_{\mathrm{k} 1}-\mathrm{m}_{\mathrm{k} j 0}\right)}{\sum_{\mathrm{k}} \tilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{k} 1}}
$$

PU^{P} compared to P^{L}

This comparison has more relevance, at least for Germany, because we have in this country customs based (census method) PU^{P} indices and survey based (sample) P^{L} indices.

However, a theory of the bias $\frac{\mathrm{PU}_{01}^{\mathrm{P}}-1}{\mathrm{P}^{\mathrm{L}}}$ seems to be quite difficult (see sec. 3.3)
the numerator here is a covariance

3. Two-stage Paasche index PU^{P} 3.2 PU^{P} and Paasche P^{P} (1)

In (17) the term $\sum_{\mathrm{j}} \mathrm{p}_{\mathrm{kj} 0}\left(\mathrm{~m}_{\mathrm{kj} 1}-\mathrm{m}_{\mathrm{kj} 0}\right)$ is indeed a covariance [cov_{k} type, within a CN, see (3a)]
(17a) $\sum_{\mathrm{j}} \mathrm{p}_{\mathrm{kj} 0}\left(\mathrm{~m}_{\mathrm{kj} 1}-\mathrm{m}_{\mathrm{kj} 0}\right)=\mathrm{n}_{\mathrm{k}} \operatorname{cov}_{\mathrm{k}}\left(\mathrm{p}_{\mathrm{k} j 0}, \mathrm{~m}_{\mathrm{kj} 1}-\mathrm{m}_{\mathrm{k} j 0}, 1 / \mathrm{n}_{\mathrm{k}}\right)$

$$
\operatorname{cov}_{\mathrm{k}}(\ldots)=\sum_{\mathrm{j}=1}^{\mathrm{n}_{\mathrm{k}}}\left(\mathrm{p}_{\mathrm{kj} 0}-\overline{\mathrm{p}}_{\mathrm{k} 0}\right)\left(\mathrm{m}_{\mathrm{kj} 1}-\mathrm{m}_{\mathrm{kj0}}\right) \frac{1}{n_{\mathrm{k}}} \quad \text { since } \quad \begin{aligned}
& \sum_{\mathrm{j}} \mathrm{p}_{\mathrm{k} k 0}=\mathrm{n}_{\mathrm{k}} \overline{\mathrm{p}}_{\mathrm{k} 0} \\
& \sum_{\mathrm{j}} \mathrm{~m}_{\mathrm{k} j}=\sum_{\mathrm{j}} \mathrm{~m}_{\mathrm{k} j 0}=1
\end{aligned}
$$

However, the bias $\frac{\mathrm{PU}_{01}^{\mathrm{P}}}{\mathrm{P}_{01}^{p}-1}$ is not a weighted average of these covariances
(17b)

$$
\frac{\mathrm{PU}_{01}^{\mathrm{P}}}{\mathrm{P}_{01}^{\mathrm{P}}}-1=\sum_{\mathrm{k}} \frac{\mathrm{Q}_{\mathrm{k} 1}}{\sum_{\mathrm{k}} \tilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{k} 1}} \cdot \mathrm{n}_{\mathrm{k}} \operatorname{cov}_{\mathrm{k}}\left(\mathrm{p}_{\mathrm{k} j}, \mathrm{~m}_{\mathrm{kj} 1}-\mathrm{m}_{\mathrm{k} 0}, 1 / \mathrm{n}_{\mathrm{k}}\right)
$$

What matters is again covariance between prices in $\mathbf{0}$ and change of quantity structure (now within the $\mathrm{k}^{\text {th }} \mathrm{CN}$

Diewert considered $\quad \mathrm{P}_{01}^{\mathrm{P}} / \mathrm{PU}_{01}^{\mathrm{P}}-1$ instead of $\mathrm{PU}_{01}^{\mathrm{P}} / \mathrm{P}_{01}^{\mathrm{P}}-1$ and he found \rightarrow
"In this section, we will find it convenient to define the bias using a reciprocal measure" (p. 13)

3. Two-stage Paasche index $\mathrm{PU}^{\mathrm{P}} \quad 3.2 \quad \mathrm{PU}^{\mathrm{P}}$ and Paasche P^{P} (2)

(18) $\quad \mathrm{P}_{01}^{\mathrm{P}} / \mathrm{PU}_{01}^{\mathrm{P}}-1=\frac{\mathrm{n} \cdot \operatorname{Cov}\left(\mathrm{p}^{0}, \mathrm{~s}^{0}-\mathrm{s}^{1}, 1 / \mathrm{n}\right)}{\sum \sum \mathrm{p}_{\mathrm{kj} 0} \mathrm{~s}_{\mathrm{kj} 0}}$ $\mathrm{p}^{0}, \mathrm{~s}^{0}$ und s^{1} are vectors - of $\mathrm{p}_{\mathrm{kj} 0}, \mathrm{~s}_{\mathrm{kj} 0}, \mathrm{~s}_{\mathrm{kj} 1}$ - stacked up into a single n dimensional vector (using $\mathrm{m}_{\mathrm{kjt}} \sigma_{\mathrm{kj}}=\mathrm{s}_{\mathrm{kjt}}$)
again: what matters is prices in 0 , quantity change...
Diewert compared bias $\mathrm{PU}{ }^{\mathrm{P}}$ and P^{D} relative to P^{P} and PU^{L} and P^{D} relative to P^{L}. Our focus here, however, only PU^{P} relative to P^{P} and P^{L}

v. d. Lippe's approach (2 points)

1. express discrepancy (= bias +1) as a weighted average of ratios of linear indices of CNs (sub-aggregates)

$$
\mathrm{S}=\mathrm{PU}_{01}^{\mathrm{P}} / \mathrm{P}_{01}^{\mathrm{P}}=\text { bias }+1 \quad \mathrm{~S}=\text { structural component, "S-effect" }
$$

$$
\text { using the identity (19) } \mathrm{V}_{01}=\mathrm{PU}_{01}^{\mathrm{L}} \mathrm{QU}_{01}^{\mathrm{P}}=\mathrm{PU}_{01}^{\mathrm{P}} \mathrm{QU}_{01}^{\mathrm{L}}=\mathrm{P}_{01}^{\mathrm{L}} \mathrm{Q}_{01}^{\mathrm{P}}=\mathrm{P}_{01}^{\mathrm{P}} \mathrm{Q}_{01}^{\mathrm{L}}
$$

notice $S=\sum_{k} \frac{Q_{01}^{L(k)}}{\widetilde{Q}_{01}^{k}} \cdot \frac{\tilde{Q}_{01}^{k} S_{k 0}}{\sum_{k} \widetilde{\mathrm{Q}}_{01}^{k} S_{k 0}}=\sum_{k} S_{01}^{k} \cdot \frac{\widetilde{p}_{k 0} \mathrm{Q}_{k 1}}{\sum_{k} \tilde{\mathrm{p}}_{k 0} \mathrm{Q}_{\mathrm{k} 1}}$ is a weighted mean of $S_{01}^{\mathrm{k}}=\frac{\mathrm{Q}_{01}^{\mathrm{L}(\mathrm{k})}}{\widetilde{Q}_{01}^{\mathrm{k}}} \quad$ terms which may be viewed as contributions of the the the S-effect; and weights $\tilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{k} 1} / \sum_{\mathrm{k}} \tilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{k} 1}$
2. As the S^{k} terms are ratios of linear indices you can make use of a theorem of L. v. Bortkiewicz
(on the relation between two linear indices), which goes as follows \Rightarrow next slide
\Rightarrow v.d.Lippe (2007), p. 194 for the Generalized Theorem, the famous special case is $\mathrm{X}_{\mathrm{t}}=\mathrm{PP}^{\mathrm{P}}$ and $\mathrm{X}_{0}=\mathrm{P}^{\mathrm{L}}$

Ladislaus von Bortkiewicz (1923)

Theorem of L. v. Bortkiewicz

The ratio of two linear indices, X_{t} and X_{0} respectively where $(\mathrm{t}=1)$
$\mathrm{X}_{\mathrm{t}}=\frac{\sum \mathrm{x}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}}}{\sum \mathrm{x}_{0} \mathrm{y}_{\mathrm{t}}}$ and $\mathrm{X}_{0}=\frac{\sum \mathrm{x}_{\mathrm{t}} \mathrm{y}_{0}}{\sum \mathrm{x}_{0} \mathrm{y}_{0}}$
with the co-variance s_{xy} is given by $\frac{\mathrm{X}_{\mathrm{t}}}{X_{0}}=1+\frac{\mathrm{s}_{\mathrm{xy}}}{\bar{X} \cdot \bar{Y}}$

$$
\mathrm{s}_{\mathrm{xy}}=\sum\left(\frac{\mathrm{x}_{\mathrm{t}}}{\mathrm{x}_{0}}-\overline{\mathrm{X}}\right)\left(\frac{\mathrm{y}_{\mathrm{t}}}{\mathrm{y}_{0}}-\overline{\mathrm{Y}}\right) \mathrm{w}_{0}=\frac{\sum \mathrm{x}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}}}{\sum \mathrm{x}_{0} \mathrm{y}_{0}}-\overline{\mathrm{X}} \cdot \overline{\mathrm{Y}}
$$

weights $\mathrm{w}_{0}=\mathrm{x}_{0} \mathrm{y}_{0} / \sum \mathrm{x}_{0} \mathrm{y}_{0}$
arithmetic means
$\sum\left(\mathrm{x}_{\mathrm{t}} / \mathrm{x}_{0}\right) \cdot \mathrm{w}_{0}=\overline{\mathrm{X}}=\mathrm{X}_{0} \quad \sum\left(\mathrm{y}_{\mathrm{t}} / \mathrm{y}_{0}\right) \cdot \mathrm{w}_{0}=\overline{\mathrm{Y}}=\sum \mathrm{y}_{\mathrm{t}} \mathrm{x}_{0} / \sum \mathrm{y}_{0} \mathrm{x}_{0}$

Two covariance expressions to explain $\mathrm{S}^{(\mathrm{k})}$ in eq. 18

$$
\begin{equation*}
\mathrm{S}=\frac{\mathrm{Q}_{01}^{\mathrm{L}}}{\mathrm{QU}_{01}^{\mathrm{L}}}=\sum_{\mathrm{k}} \frac{\mathrm{Q}_{01}^{\mathrm{L}(\mathrm{k})}}{\widetilde{\mathrm{Q}}_{01}^{\mathrm{k}}} \cdot \frac{\tilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{k} 1}}{\sum_{\mathrm{k}} \tilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{k} 1}}=\sum_{\mathrm{k}} \mathrm{~S}_{01}^{\mathrm{k}} \cdot \frac{\tilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{k} 1}}{\sum_{\mathrm{k}} \tilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{k} 1}} \tag{20}
\end{equation*}
$$

(21) | $X_{t}=Q_{01}^{L(k)}$ | $X_{0}=\widetilde{Q}_{01}^{k}$ |
| :--- | :--- |
| X^{k} | $\sum\left(\frac{q_{k j 1}}{q_{k j 0}}-\widetilde{Q}_{01}^{k}\right)\left(p_{k j 0}-\tilde{p}_{k 0}\right) \frac{q_{k j 0}}{\sum q_{k j 0}}, ~$ |

quantity shares $\mathrm{m}_{\mathrm{kj} 0}$ as weights

With this covariance $\mathbf{c}_{\mathbf{k}}=\operatorname{cov}_{\mathbf{k}}\left(\mathbf{q}_{\mathbf{k j} 1} / \mathbf{q}_{\mathbf{k j} 0}, \mathbf{p}_{\mathbf{k j} 0}, \mathbf{m}_{\mathbf{k j} 0}\right)$ - which bears some resemblance to the $\operatorname{covariance} \operatorname{Cov}(3)=\operatorname{Cov}\left(\mathrm{q}_{\mathrm{kj} 1} / \mathrm{q}_{\mathrm{kj} 0}, \mathrm{p}_{\mathrm{kj} 0}, \mathrm{~s}_{\mathrm{kj} 0}\right)$ in eq. 11 - we get $c_{k}=\tilde{p}_{k 0}\left(Q_{01}^{L(k)}-\widetilde{Q}_{01}^{k}\right)$ and using the Bortkiewicz theorem
(21a) $S_{01}^{\mathrm{k}}=\frac{\mathrm{Q}_{01}^{\mathrm{L}(\mathrm{k})}}{\widetilde{\mathrm{Q}}_{01}^{\mathrm{k}}}=\frac{\mathrm{X}_{1}}{\mathrm{X}_{0}}=1+\frac{\mathrm{c}_{\mathrm{k}}}{\overline{\mathrm{X}} \cdot \overline{\mathrm{Y}}}=1+\frac{\mathrm{c}_{\mathrm{k}}}{\tilde{\mathrm{p}}_{\mathrm{k} 0} \widetilde{\mathrm{Q}}_{01}^{\mathrm{k}}} \quad$ and using (20)

3. Two-stage Paasche index $\mathrm{PU}^{\mathrm{P}} \quad 3.2 \quad \mathrm{PU}^{\mathrm{P}}$ and Paasche P^{P} (6)

$\mathrm{S}=\frac{\mathrm{PU}_{01}^{\mathrm{P}}}{\mathrm{P}_{01}^{\mathrm{P}}}=\sum_{k} \mathrm{~S}_{01}^{\mathrm{k}} \cdot \frac{\tilde{\mathrm{p}}_{k 0} \mathrm{Q}_{k 1}}{\sum_{k} \tilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{k} 1}}=1+\frac{\sum_{k} \mathrm{c}_{\mathrm{k}} \mathrm{Q}_{\mathrm{k} 0}}{\sum_{k} \tilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{k} 1}} \quad$ or in terms of a bias
(21b) $\frac{\mathrm{PU}_{01}^{\mathrm{P}}}{\mathrm{P}_{01}^{P}}-1=\sum_{\mathrm{k}} \frac{\mathrm{Q}_{\mathrm{k} 0}}{\sum_{\mathrm{k}} \tilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{k} 1}} \cdot \operatorname{cov}_{\mathrm{k}}\left(\mathrm{p}_{\mathrm{kj} 0}, \mathrm{q}_{\mathrm{kj} 1} / \mathrm{q}_{\mathrm{k} 0}, \mathrm{~m}_{\mathrm{kj} 0}\right)$
which may be compared to the formula (17a) on slide 21
(17a) $\frac{\mathrm{PU}_{01}^{\mathrm{P}}}{\mathrm{P}_{01}^{P}}-1=\sum_{\mathrm{k}} \frac{\mathrm{Q}_{\mathrm{k} 1}}{\sum_{\mathrm{k}} \tilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{k} 1}} \cdot \operatorname{cov}_{\mathrm{k}}\left(\mathrm{p}_{\mathrm{k} 0}, \mathrm{~m}_{\mathrm{kj} 1}-\mathrm{m}_{\mathrm{kj} 0}, 1 / \mathrm{n}_{\mathrm{k}}\right)$
Using the shift theorem (3) it can be seen that in both equations the $\sum_{\mathrm{j}} \mathrm{p}_{\mathrm{kj} 0} \mathrm{q}_{\mathrm{kj} 1}+\mathrm{Q}_{\mathrm{k} 1} \widetilde{\mathrm{p}}_{\mathrm{k} 0}$
Alternatively we might explain $\left(\mathrm{S}^{(k)}\right)^{-1}$

$$
\begin{array}{|l|l|}
\hline \mathrm{X}_{\mathrm{t}}=\widetilde{\mathrm{Q}}_{01}^{\mathrm{k}} \tag{22}\\
\hline \mathrm{X}_{0}=\mathrm{Q}_{01}^{\mathrm{L}(\mathrm{k})} & \sum\left(\frac{\mathrm{q}_{\mathrm{k} j 1}}{\mathrm{q}_{\mathrm{k} j 0}}-\mathrm{Q}_{01}^{\mathrm{L}(\mathrm{k})}\right)\left(\frac{1}{\mathrm{p}_{\mathrm{k} j 0}}-\frac{1}{\tilde{\mathrm{p}}_{\mathrm{k} 0}}\right) \frac{\mathrm{p}_{\mathrm{k} j 0} \mathrm{q}_{\mathrm{k} j 0}}{\sum \mathrm{p}_{\mathrm{k} j 0} \mathrm{q}_{\mathrm{k} j}}
\end{array} \begin{aligned}
& \text { expenditure } \\
& \text { shares as } \\
& \text { weights }
\end{aligned}
$$

PU^{P} relative to P^{D}

$$
\frac{\mathrm{P}_{01}^{\mathrm{D}}}{\mathrm{PU}_{01}^{\mathrm{P}}}=\frac{\mathrm{QU}_{01}^{\mathrm{L}}}{\widetilde{\mathrm{Q}}_{01}}=\frac{\mathrm{X}_{1}}{\mathrm{X}_{0}} \quad \mathrm{X}_{0}=\frac{\sum_{\mathrm{k}} \mathrm{Q}_{\mathrm{k} 1} \cdot 1}{\sum_{\mathrm{k}} \mathrm{Q}_{\mathrm{k} 0} \cdot 1}=\tilde{\mathrm{Q}}_{01}
$$

(23) $\operatorname{Cov}\left(\mathrm{Q}_{\mathrm{k} 1} / \mathrm{Q}_{\mathrm{k} 0}, \tilde{\mathrm{p}}_{\mathrm{k} 0}, \mathrm{Q}_{\mathrm{k} 0} / \sum \mathrm{Q}_{\mathrm{k} 0}\right)$ equivalently $\sum_{\mathrm{k}}\left(\mathrm{Q}_{\mathrm{k} 1} / \mathrm{Q}_{\mathrm{k} 0}-\tilde{\mathrm{Q}}_{01}\right)\left(\tilde{\mathrm{p}}_{\mathrm{k} 0}-\tilde{\mathrm{p}}_{0}\right) \frac{\mathrm{Q}_{\mathrm{k} 0}}{\mathrm{Q}_{0}}$

If above average base period unit values are associated with above average quantity changes P^{D} will be greater than PU^{P}
PU^{L} relative to P^{D}

$$
\frac{\mathrm{P}_{01}^{\mathrm{D}}}{\mathrm{PU}_{01}^{\mathrm{L}}}=\frac{\mathrm{QU}_{01}^{\mathrm{P}}}{\widetilde{\mathrm{Q}}_{01}}=\frac{\mathrm{X}_{1}}{\mathrm{X}_{0}} \quad \mathrm{X}_{1}=\frac{\sum_{\mathrm{k}} \mathrm{Q}_{\mathrm{k} 1} \tilde{\mathrm{p}}_{\mathrm{k} 1}}{\sum_{\mathrm{k}} \mathrm{Q}_{\mathrm{k} 1} \tilde{\mathrm{p}}_{\mathrm{k} 1}}=\mathrm{QU}_{01}^{\mathrm{P}}
$$

what applied to the K within (the k CNs) covariances in eq. 21, now applies to the one between covariance

$$
\begin{equation*}
\operatorname{Cov}\left(\mathrm{Q}_{\mathrm{k} 1} / \mathrm{Q}_{\mathrm{k} 0}, \tilde{\mathrm{p}}_{\mathrm{k} 1}, \mathrm{Q}_{\mathrm{k} 0} / \sum \mathrm{Q}_{\mathrm{k} 0}=\sigma_{\mathrm{k} 0}\right) \tag{23a}
\end{equation*}
$$

If above average current period unit values ...

3. Two-stage Paasche index PU ${ }^{\mathrm{P}} \quad 3.3 \quad \mathrm{PU}^{\mathrm{P}}$ and Laspeyres P^{L} (1)

PU ${ }^{\mathrm{P}}$ and Laspeyres

(24) $\frac{\mathrm{PU}_{01}^{\mathrm{P}}}{\mathrm{P}_{01}^{\mathrm{L}}}-1=\frac{\sum_{k} \widetilde{\mathrm{p}}_{\mathrm{k} 1} \mathrm{Q}_{\mathrm{k} 1}}{\sum_{\mathrm{k}} \tilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{k} 1}} \cdot \frac{\sum_{\mathrm{k}} \widetilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{k} 0}}{\sum_{\mathrm{k}} \sum_{\mathrm{j} j} \mathrm{p}_{\mathrm{k} 1} q_{\mathrm{k} j 0}}-1$
compared to

$$
\begin{equation*}
\frac{\mathrm{PU}_{01}^{\mathrm{P}}}{\mathrm{P}_{01}^{\mathrm{P}}}-1=\frac{\sum_{\mathrm{k}} \sum_{\mathrm{j}} \mathrm{p}_{\mathrm{k} j} \mathrm{q}_{\mathrm{k} 1 \mathrm{l}}}{\sum_{\mathrm{k}} \tilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{k} 1}}-1 \underbrace{\text { or to } \mathrm{P}^{\mathrm{P}}}_{\text {than PU }} \text { or }{ }^{\text {or }} \text { to PL } \tag{17}
\end{equation*}
$$

we will therefore make a comparison in two steps (see slide
the equations of little (or no) relevance are the counterparts to (20) and (22)

$$
\text { (20a) } \quad S^{*}=\frac{P_{01}^{L}}{P_{01}^{L}}=\frac{Q_{01}^{P}}{Q_{01}^{P}}=\sum_{k} \frac{Q_{01}^{P(k)}}{\widetilde{Q}_{01}^{\mathrm{P}}} \cdot \frac{\sum_{j} p_{k j 1} q_{k i 0}}{\sum_{k} \sum_{j} p_{k j 1} q_{k i 0}}=\sum_{k} S_{01}^{* k} \cdot \frac{\sum_{j} p_{k j 1} q_{k i 0}}{\sum_{k} \sum_{j} p_{k j 1} q_{k i 0}}
$$

relevant covariance to explain S^{*}

3. PU^{P} index $3.4 \mathrm{PU}^{\mathrm{P}}$ and P^{P} (summary of "structural effect")

1. Difference (bias) PU^{P} relative to P^{P} results from structural changes (structure of quantities), measured by (18) $\mathrm{S}=\mathrm{PU}^{\mathrm{P}} / \mathrm{P}^{\mathrm{P}}=\mathrm{Q}^{\mathrm{L}} / \mathrm{QU}^{\mathrm{L}}$
2. S is a weighted mean of S_{k} measures $\left.\left(\mathrm{Q}^{\mathrm{L}} / \widetilde{\mathrm{Q}} \text { ratio of the } \mathrm{k}^{\text {th }} \mathrm{CN}\right)^{*}\right)$
weights $\quad \tilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{k} 1} / \sum_{\mathrm{k}} \tilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{k} 1}$
${ }^{*}$) numerator and denominator are linear indices therefore the theorem of L. v. Bortkiewicz applies
3. this theorem says that a covariance $\operatorname{cov}_{k}(\ldots)$ is responsible for the contribution of the $\mathrm{k}^{\text {th }} \mathrm{CN}$ to the S -effect (to S), and this covariance is

cf. conditions on slide 11 (regarding P^{D} and P^{P}) prices in 1 and $p_{k j 1} / p_{k j 0}$ irrelevant
and this means: no S-effect when
4. all prices in 0 equal $\mathrm{p}_{\mathrm{k} j 0}=\tilde{\mathrm{p}}_{\mathrm{k} 0}=\overline{\mathrm{p}}_{\mathrm{k} 0}$
5. quantities remain constant $q_{k j 1}=q_{k j 0}$
6. covariance vanishes: above (below) average base period prices are associated with below (above) average increase in quantities
7. each $\mathrm{n}_{\mathrm{k}}=1$ (homogenous CNs) more \rightarrow

3. PU^{P} index $3.4 \mathrm{PU}^{\mathrm{P}}$ and P^{P} (more remarks on the "structural effect")

Homogeneity of CNs

1. no CNs, only individual goods
(or: each $\mathrm{n}_{\mathrm{k}}=1$, perfectly homogeneous CNs)
S-effect also vanishes if
2. all $\mathrm{q}_{\mathrm{kj} 1} / \mathrm{q}_{\mathrm{kj} 0}$ equal $(\mathrm{or}=1)$ 3. all prices $\mathrm{p}_{\mathrm{kj} 0}$ equal $\forall \mathrm{j}, \mathrm{k}$
3. zero covariances or average of Cov_{k} weights $\tilde{p}_{k 0} Q_{k 1} / \sum_{k} \tilde{\mathrm{p}}_{\mathrm{k}} \mathrm{Q}_{\mathrm{k} 1}$

Economic interpretation of the S-effect
note: prices in t are irrelevant for the S-effect to occur by contrast to the L-effect (= substitution effect).

How to explain a quantity change although no price has changed?

Some consequences

condition "for choosing how to construct the subaggregates: in order to minimize bias (relative to the Paasche price index), use unit value aggregation over products that sell for the same price in the base period" (Diewert 2010, p. 14)

4. PU^{P} and P^{L} index (comparison in two steps, S - and L-effect)

Basis of decomposition $V_{0 t}=\mathrm{PU}_{0 \mathrm{t}}^{\mathrm{L}} \mathrm{QU}_{0 \mathrm{t}}^{\mathrm{P}}=\mathrm{PU}_{0 \mathrm{t}}^{\mathrm{P}} \mathrm{QU}_{0 \mathrm{t}}^{\mathrm{L}}$

$$
\begin{array}{|l}
\hline \mathrm{D}=\frac{\mathrm{PU}_{0 \mathrm{t}}^{\mathrm{P}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}}=\left(\frac{\mathrm{C}}{\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}} \mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}}+1\right)\left(\frac{\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}}}{\mathrm{QU}_{0 \mathrm{t}}^{\mathrm{L}}}\right)=\frac{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}} \cdot \frac{\mathrm{PU}_{0 \mathrm{t}}^{\mathrm{P}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}}=\mathrm{L} \cdot \mathrm{~S} \\
\begin{array}{l}
\text { The covariance C here is } \\
\text { (Theorem of Bortkiewicz) }
\end{array} \\
\mathrm{L}=\frac{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}}=\frac{\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{P}}}{\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}}}
\end{array}
$$

$C=\sum_{i}\left(\frac{p_{i t}}{p_{i 0}}-P_{0 t}^{L}\right)\left(\frac{q_{i t}}{q_{i 0}}-Q_{0 t}^{L}\right) \frac{p_{i 0} q_{i 0}}{\sum p_{i 0} q_{i 0}}$
expenditure shares as weights rather than quantity shares

No L-effect ($L=1$) if

1. all price relatives equal or $=1$
2. all quantity relatives equal or $=1$
3. covariance $=0$
both quantity change and price
changes do not matter (price change irrelevant for the S-effect)

4. Why compare PUP to P^{L} rather than P^{P} Indices in Germany

Data source, conceptual differences

	Price index	Unit value index
Data	Survey based (monthly), sample; more demanding (weights!)	Customs based (by-product), census, Intrastat: survey
Formula	Laspeyres	Paasche
Quality ad- justment	Yes	No (feasible?)
Prices, aggregates	Prices of specific goods at time of contracting	Average value of CNs; time of cross- ing border CN = commodity numbers
New / dis- appearing goods	Included only when a new base period is defined; vanishing goods replaced by similar ones constant selection of goods *	Immediately included; price quotation of disappearing goods is simply discontinued variable universe of goods
Merits	Reflect pure price movement (ideally the same products over time)	"Representativity" inclusion of all products; data readily available
Published in	Fachserie 17, Reihe 11	Fachserie 7, Reihe 1

[^0]| Hypothesis | Argument |
| :--- | :--- |
| 1. $\mathrm{U}<\mathbf{P}$, growing
 discrepancy | Laspeyres (P) > Paasche (U)
 Formula of L. v. Bortkiewicz |
| 2. Volatility U > P | U no pure price comparison
 (U reflecting changes in product mix [structural changes]) |
| 3. Seasonality U > P | U no adjustment for seasonally non-
 availability |
| 4. U suffers from
 heterogeneity | Variable vs. constant selection of goods,
 CN less homogeneous than specific goods |
| 5. Lead of P | Prices refer to the earlier moment of
 contracting (contract-delivery lag; exchange rates) |
| 6. Smoothing (due to
 quality adjustment) | Quality adjustment in P results in smoother
 series |

4. The two effects L and S

Deflator X and M respectively taken for P^{P} are S and L independent components??

- Laspeyres effect (\% pt) -- Structural component (\% pt) \cdots Discrepancy (\%)

Data problems with updating of this figure

5. Conclusion: Problems and confusions with unit-value-indices

- Unit values as proxies for prices are increasingly important
- Unfortunately the term "unit value index" is used for very different index formulas
- The focus of index theory is almost exclusively on the practically less relevant index of Drobisch P^{D} (irrelevant because as a rule $\sum_{k} \mathrm{Q}_{\mathrm{kt}}$ does not exist)
- There is no consensus about the name of $\mathrm{PU}^{\mathrm{P}}, \mathrm{PU}^{\mathrm{L}}$ (we should, however, find a name in order to stop the prevailing confusion)
- By contrast to P^{D} these indices are in fact weighted means of ratios of unit values (not of price relatives), and they make use of quantities Q_{kt} only
- The bias of PU^{P} relative to P^{P} can be explained by the covariance between base-period prices and changes in the structure of quantities.
- Many (interrelated) covariance-expressions are possible and the formulas are also a bit similar to formulas for the bias of P^{D} relative to P^{P}.

[^0]: * All price determining characteristics kept constant

