

Unit Value Bias (Indices) Reconsidered

Price- and Unit-Value-Indices in Germany

Peter von der Lippe, Universität Duisburg-Essen Jens Mehrhoff*, Deutsche Bundesbank

11th Ottawa Group Meeting (Neuchâtel May 28th 2009)

^{*}This paper represents the author's personal opinion and does not necessarily reflect the view of the Deutsche Bundesbank or its staff.

- 1. Introduction and Motivation
- 2. Unit value index (UVI) and Drobisch's Index (PUD)
- 3. Price and unit value indices in German foreign trade statistics (Tests of hypotheses)
- 4. Properties and axioms (uv, UVI, PUD)
- 5. Decomposition of the Unit Value Bias (PUP/PL L- and S-effect)
- 6. Interpretation of the S-effect in terms of covariances (using a generalized theorem of Bortkiewicz)
- 7. Conclusions

1. Introduction and Motivation

Export and Import Price Index Manual (XMPI Man. IMF, 2008)

Unit Value Indices (UVIs) are used in

Prices of *trade* (export/import), *land*, *air freight* and certain *services* (consultancy, lawyers etc)

Literature (UVIs cannot replace price indices)

Balk 1994, 1995 (1998), 2005

Diewert 1995 (NBER paper), 2004 etc.

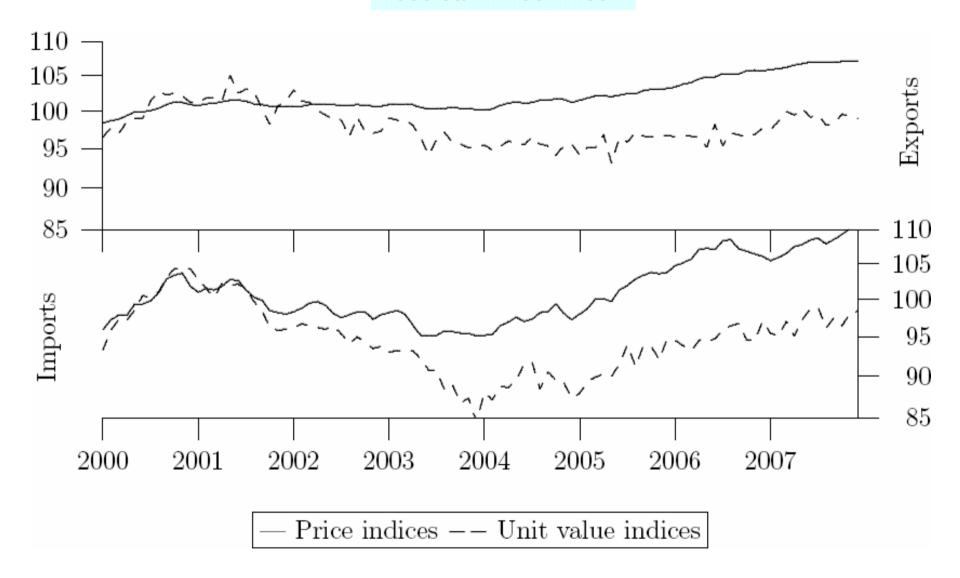
von der Lippe 2006 GER

http://mpra.ub.uni-muenchen.de/5525/1/MPRA _paper_5525.pdf

Silver (2007), Do Unit Value Export, Import, and Terms of Trade Indices Represent or Misrepresent Price Indices, IMF Working Paper WP/07/121

1. Introduction and Motivation

2000 Jan - 2007 Dec



1. Unit value for the kth commodity number (CN)

$$\widetilde{p}_{k0} = \frac{\sum p_{kj0} q_{kj0}}{\sum q_{kj0}} = \sum_{j} p_{kj0} \frac{q_{kj0}}{Q_{k0}} = \sum_{j} p_{kj0} m_{kj0}$$

k = 1, ..., K Unit values are not defined over all CNs

Examples for CNs

HS (Harmonized System)	Germany (Warenverzeichnis)
19 05 90 Other Bakers' Wares, Communion Wafers, Empty Capsules, Sealing Wafers	19 05 90 45 Cakes and similar small baker's wares (8 digits)
23 09 10 Dog or Cat Food, Put up for Retail Sale	23 09 10 11 to 23 09 10 90 twelve (!!) CNs for dog or cat food

2. German Unit Value Index (UVI) of exports/imports the usual Paasche index (unit values instead of prices)

$$PU_{0t}^{P} = \frac{\sum_{k} \tilde{p}_{kt} Q_{kt}}{\sum_{k} \tilde{p}_{k0} Q_{kt}} = \frac{\sum_{k} \sum_{j}^{n_{k}} p_{kjt} q_{kjt}}{\sum_{k} Q_{kt} \left(\sum_{j}^{n_{k}} \frac{p_{kj0} q_{kj0}}{Q_{k0}}\right)}$$

 $= \frac{\sum_{k}^{K} \sum_{j}^{n_{k}} p_{kjt} q_{kjt}}{\sum_{k}^{K} Q_{kt} \left(\sum_{j=1}^{n_{k}} \frac{p_{kj0} q_{kj0}}{Q_{ki0}} \right)}$ Aggregation in two stages; k = 1, ..., K, $j = 1, ..., n_{K}$ commodities in the k^{th} CN; $\sum n_{k} = n$ (all commodities)

3. The Unit value index (UVI) should be kept distinct from Drobisch's index (1871)

$$P_{0t}^{DR} = \frac{\sum\limits_{k}\sum\limits_{j}p_{jkt}\,q_{jkt} \left/\sum\limits_{k}\sum\limits_{j}q_{jk0}}{\sum\limits_{j}\sum\limits_{k}p_{jk0}\,q_{jk0} \left/\sum\limits_{k}\sum\limits_{j}q_{jk0}} = \frac{\sum\limits_{k}\sum\limits_{j}p_{jkt}\,q_{jkt} \left/\sum\limits_{k}Q_{kt}}{\sum\limits_{j}\sum\limits_{k}p_{jk0}\,q_{jk0} \left/\sum\limits_{k}Q_{k0}} \right.$$

Drobisch's index

$$\mathbf{P}_{0t}^{\mathrm{DR}} = \ rac{\widetilde{\mathbf{p}}_{\mathrm{t}}}{\widetilde{\mathbf{p}}_{\mathrm{0}}} = rac{\mathbf{V}_{\mathrm{0t}}}{\widetilde{\mathbf{Q}}_{\mathrm{0t}}}, \quad \widetilde{\mathbf{Q}}_{\mathrm{0t}} = rac{\mathbf{Q}_{\mathrm{t}}}{\mathbf{Q}_{\mathrm{0}}}$$

However, Drobisch is better known for

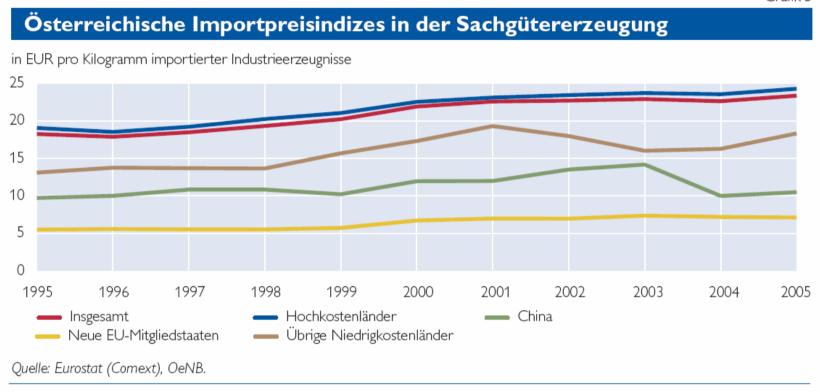
$$\frac{1}{2} \left(P_{0t}^{L} + P_{0t}^{P} \right)$$

	no information about quantities available	information about quantities
the same commodity in different outlets	"normal" usage of the term "low level"	
different goods grouped by a classification		situation of a UVI (Σq needed for unit value)

It does not make sense to consider absolute unit values ("Euro per kilogram")

Austrian Import prices rose from ≈ 20 € per kilogram in 1995 to 25 € ... in 2005

Grafik 5



Glatzer et al "Globalisierung..." http://www.oenb.at/de/img/gewi_2006_3_tcm14-46922.pdf

"Because we use weights as units an increasing import price index could be explained by either rising prices or reduced weights due to quality improvement"

2. UVI and price indices (PI): System of possible indices

$2^4 = 16$ indices:

type of index (price vs quantity)

Prices (p) vs unit values (uv)

Laspeyres vs Paasche

Export vs import

$$V = \Sigma p_t q_t / \Sigma p_0 q_0 = P^P Q^L = P U^P Q U^L$$

	Price-indices		Quantity-indices	
	p uv		p	uv
Laspeyres	$\mathbf{P}^{\mathbf{L}}$	PU ^L	$\mathbf{Q}^{\mathbf{L}}$	QU^{L}
Paasche	P ^P	PUP	QP	QUP

3. Indices in Germany

(1) Data source, conceptual differences

	Price index	Unit value index
Data	Survey based (monthly), sample; more demanding (weights!)	Customs based (by-product), census, Intrastat: survey
Formula	Laspeyres	Paasche
Quality adjustment	Yes	No (feasible?)
Prices, aggregates	Prices of specific goods at time of contracting	Average value of CNs; time of crossing border
New / dis- appearing goods	Included only when a new base period is defined; vanishing goods replaced by <i>similar</i> ones constant selection of goods *	Immediately included; price quotation of disappearing goods is simply discontinued variable universe of goods
Merits	Reflect pure price movement (ideally the same products over time)	"Representativity" inclusion of all products; data readily available
Published in	Fachserie 17, Reihe 11	Fachserie 7, Reihe 1

CN = commodity numbers

^{*} All price determining characteristics kept constant

Price index (P) Unit value index (U)

Hypothesis	Argument
1. U < P, growing discrepancy	Laspeyres (P) > Paasche (U) Formula of L. v. Bortkiewicz
2. Volatility U > P	U no pure price comparison (U is reflecting changes in product mix [structural changes])
3. Seasonality U > P	U no adjustment for seasonally non-availability
4. U suffers from heterogeneity	Variable vs. constant selection of goods, CN less homogeneous than specific goods
5. Lead of P	Prices refer to the earlier moment of contracting (contract-delivery lag; exchange rates)
6. Smoothing (due to quality adjustment)	Quality adjustment in P results in smoother series

4. Properties and axioms: 4.1. unit values: one CN, two commodities

$$p_{10} = p_{1t} = p$$

$$p_{20} = p_{2t} = \lambda p$$

$$\mu = m_{2t}/0.5$$

$$m_{10} = m_{20} = 0.5$$

$$\Delta = \tilde{p}_{kt} - \tilde{p}_{k0} = \frac{p}{2}(1 - \lambda)(1 - \mu)$$

	$\lambda > 1$ and $\mu < 1 \rightarrow \Delta < 0$	$\lambda > 1$ and $\mu > 1 \rightarrow \Delta > 0$
>1	less of the more expensive good 2 unit value <i>declining</i>	more of the more expensive good 2 unit value <i>rising</i>
ىح	$\lambda < 1$ and $\mu < 1 \rightarrow \Delta > 0$	$\lambda < 1$ and $\mu > 1 \rightarrow \Delta < 0$
<1	less of the cheaper good 2 unit value <i>rising</i>	more of the cheaper good 2 unit value <i>declining</i>
	μ<1	μ > 1

[&]quot;... 'unit value' indices ... may therefore be affected by changes in the mix of items as well as by changes in their prices. Unit value indices cannot therefore be expected to provide good measures of average price change over time" (**SNA** 93, § 16.13)

1) UVI mean of uv-ratios

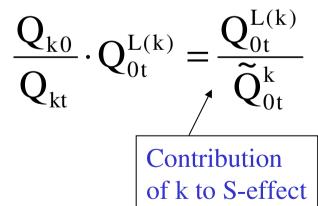
$$PU_{0t}^{P} = \sum_{k} \frac{\widetilde{p}_{kt}}{\widetilde{p}_{k0}} \frac{\widetilde{p}_{k0}Q_{kt}}{\sum_{k} \widetilde{p}_{k0}Q_{kt}}$$

2) Ratio of unit values ≠ mean of price relatives

$$\frac{\widetilde{p}_{kt}}{\widetilde{p}_{k0}} = \sum_{j} \frac{p_{kjt}}{p_{kj0}} \left(\frac{p_{kj0}q_{kjt}}{\widetilde{p}_{k0}Q_{kt}} \right)$$

the weights do not add up to unity, but to

3) Proportionality (identity)



4. Properties and axioms: 4.3. UVI and Drobisch's index

Axioms Drobisch's (price) index and the German UVI (= PU^P)

Axiom	Definition	Drobisch*	German PUP
Proportionality	$U(\mathbf{p}_0, \lambda \mathbf{p}_0, \mathbf{q}_0, \mathbf{q}_t) = \lambda$ (identity = 1)	no	no
Commensurability	$U(\Lambda \mathbf{p}_0, \Lambda \mathbf{p}_t, \Lambda^{-1} \mathbf{q}_0, \Lambda^{-1} \mathbf{q}_t) = U(\mathbf{p}_0, \mathbf{p}_t, \mathbf{q}_0, \mathbf{q}_t)$	no	no
Linear homogen.	$U(\mathbf{p}_0, \lambda \mathbf{p}_t, \mathbf{q}_0, \mathbf{q}_t) = \lambda U(\mathbf{p}_0, \mathbf{p}_t, \mathbf{q}_0, \mathbf{q}_t)$	yes	yes
Additivity** (in current period prices)	$U(\mathbf{p}_0, \mathbf{p_t^*}, \mathbf{q}_0, \mathbf{q}_t) = U(\mathbf{p}_0, \mathbf{p}_t, \mathbf{q}_0, \mathbf{q}_t) + U(\mathbf{p}_0, \mathbf{p_t^*}, \mathbf{q}_0, \mathbf{q}_t) \text{ for } \mathbf{p_t^*} = \mathbf{p}_t + \mathbf{p_t^*},$	yes	yes
Additivity** (in base period prices)	$[U(\mathbf{p_0^*}, \mathbf{p_t}, \mathbf{q_0}, \mathbf{q_t})]^{-1} = [U(\mathbf{p_0}, \mathbf{p_t}, \mathbf{q_0}, \mathbf{q_t})]^{-1} + [U(\mathbf{p_0^*}, \mathbf{p_t^*}, \mathbf{q_0}, \mathbf{q_t})]^{-1} \text{ for } \mathbf{p_0^*} = \mathbf{p_0} + \mathbf{p_0^*}$	yes	yes
Product test	Implicit quantity index of P ^{UD} or PU ^P	$\Sigma q_t / \Sigma q_0$	QU ^L
Time re- versibility	$U(\mathbf{p}_{t}, \mathbf{p}_{0}, \mathbf{q}_{t}, \mathbf{q}_{0},) = \mathbf{U} \leftarrow$ $= [U(\mathbf{p}_{0}, \mathbf{p}_{t}, \mathbf{q}_{0}, \mathbf{q}_{t})]^{-1} = [\mathbf{U} \rightarrow]^{-1}$	yes	(PU ^{P←}) = 1/(PU ^{L→})
Transitivity	$U(\mathbf{p}_0, \mathbf{p}_2, \mathbf{q}_0, \mathbf{q}_2) = U(\mathbf{p}_0, \mathbf{p}_1, \mathbf{q}_0, \mathbf{q}_1) \cdot U(\mathbf{p}_1, \mathbf{p}_2, \mathbf{q}_1)$	$q_1, q_2)$ yes	no

^{*} Balk1995, Silver 2007, IMF Manual; applies also to $\underline{sub} index ~~\widetilde{p}_{kt}/\widetilde{p}_{k0}$

^{**} Inclusive of (strict) monotonicity

5. Decomposition of the discrepancy D

Value index $V_{0t} = PU_{0t}^{L}QU_{0t}^{P} = PU_{0t}^{P}QU_{0t}^{L}$

Bortkiewicz Formula

$$C = \sum_{i} \left(\frac{p_{it}}{p_{i0}} - P_{0t}^{L} \right) \left(\frac{q_{it}}{q_{i0}} - Q_{0t}^{L} \right) \frac{p_{i0}q_{i0}}{\sum p_{i0}q_{i0}}$$

$$= V_{0t} - Q_{0t}^{L} P_{0t}^{L} = Q_{0t}^{L} (P_{0t}^{P} - P_{0t}^{L})$$

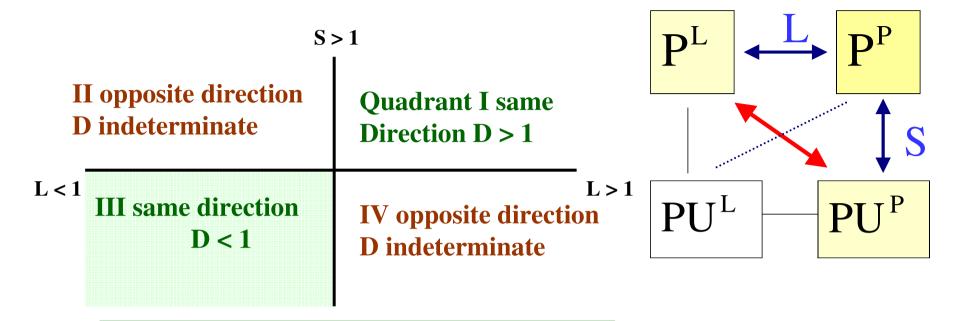
Discrepancy (uv-bias)

$$D = \frac{PU_{0t}^{P}}{P_{0t}^{L}} = \left(\frac{C}{Q_{0t}^{L}P_{0t}^{L}} + 1\right)\left(\frac{Q_{0t}^{L}}{QU_{0t}^{L}}\right) = \frac{P_{0t}^{P}}{P_{0t}^{L}} \cdot \frac{PU_{0t}^{P}}{P_{0t}^{P}} = L \cdot S$$

Ladislaus von Bortkiewicz (1923)

$$L = \frac{Q_{0t}^{P}}{Q_{0t}^{L}} = \frac{Q_{0t}^{P}}{S \cdot QU_{0t}^{L}} = \frac{PU_{0t}^{P}}{S \cdot P_{0t}^{L}} \qquad S = \frac{Q_{0t}^{L}}{QU_{0t}^{L}} = \frac{Q_{0t}^{P}}{L \cdot QU_{0t}^{L}} = \frac{PU_{0t}^{P}}{L \cdot P_{0t}^{L}}$$

5. The two effects L and S - 1 -

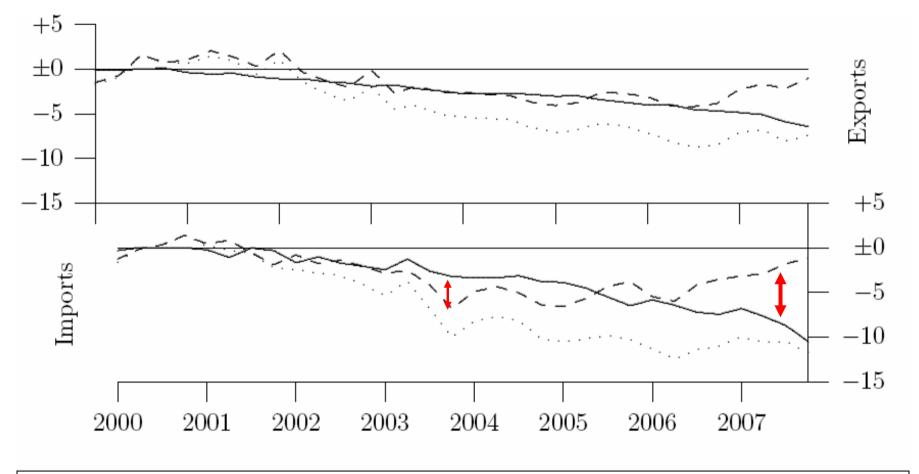


In I and III we can combine two inequalities

	S < 1	S = 1	S > 1
L > 1	II. indefinite	$PU^P > P^L$	$I. PU^P > P^P > P^L$
L = 1	$PU^{P} < P^{L} = P^{P}$	$PU^{P} = P^{P} = P^{L}$	$PU^P > P^L = P^P$
L < 1	III. $PU^P < P^P < P^L$	$PU^P < P^L$	IV. indefinite

Deflator X and M respectively taken for P^P

S and L independent?

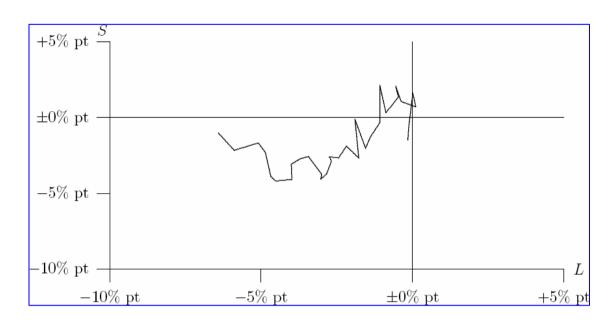


— Laspeyres effect (% pt) −− Structural component (% pt) · · · Discrepancy (%)

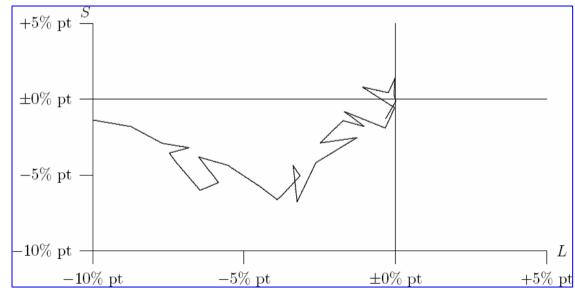
5. The two effects L and S - 3 - Time path of S-L- pairs (left \rightarrow right)

Normal reaction: **L and S negative** more likely in the case of imports

exports



imports



Interpretation L-Effect: contributions to the covariance (Szulc)

$$R = \frac{P_{P} - P_{L}}{P_{L}} = \sum_{i} \left[\left(\frac{p_{i}^{1}/p_{i}^{0} - P_{L}}{P_{L}} \right) \cdot \left(\frac{q_{i}^{1}/q_{i}^{0} - Q_{L}}{Q_{L}} \right) \cdot \left(\frac{p_{i}^{0}q_{i}^{0}}{\sum p_{i}^{0}q_{i}^{0}} \right) \right]$$

R a "centred" covariance
$$\frac{s_{xy}}{\overline{X} \cdot \overline{Y}}$$
 $L = R + 1$

A. Chaffe, M. Lequain, G. O'Donnell, Assessing the Reliability of the CPI Basket Update in Canada Using the Bortkiewicz Decomposition, Statistics Canada, September 2007

No L-effect (L = 1) if

1. all
$$p^{1}/p^{0}$$
 equal (P_{L})
or = 1
2. all $q^{1}/q^{0} = Q_{L}$ or = 1

- 3. covariance = 0

No S-effect
$$(S = Q^L/QU^L = 1)$$
 if

- 1. no CNs, only individual goods (or: each $n_k = 1$, perfectly homogeneous CNs)
- **2.** all q^{1}/q^{0} equal (or = 1) **3.** all $m_{kit} = m_{ki0}$ $\forall i, k$ 4. all prices 5. all quantities in 0 are equal prices in t are irrelevant

6. Contribution of a CN (k) to S as ratio of two linear indices

$$1. \quad S = \frac{Q_{0t}^{L}}{QU_{0t}^{L}} = \sum\nolimits_{k} \frac{Q_{0t}^{L(k)}}{\widetilde{Q}_{0t}^{k}} \cdot \frac{\widetilde{p}_{k0}Q_{kt}}{\sum\nolimits_{k} \widetilde{p}_{k0}Q_{kt}}$$

2. Generalized theorem of Bortkiewicz

for two **linear** indices X_t and X_0

$$X_{t} = \frac{\sum x_{t} y_{t}}{\sum x_{0} y_{t}}$$

$$X_0 = \frac{\sum x_t y_0}{\sum x_0 y_0}$$

$$\frac{\mathbf{X}_{\mathsf{t}}}{\mathbf{X}_{\mathsf{0}}} = 1 + \frac{\mathbf{S}_{\mathsf{x}\mathsf{y}}}{\overline{\mathbf{X}} \cdot \overline{\mathbf{Y}}}$$

$$\mathbf{w}_0 = \mathbf{x}_0 \mathbf{y}_0 / \sum \mathbf{x}_0 \mathbf{y}_0$$

$$\sum \frac{\mathbf{X}_{\mathsf{t}}}{\mathbf{X}_{\mathsf{0}}} \mathbf{w}_{\mathsf{0}} = \overline{\mathbf{X}} = \mathbf{X}_{\mathsf{0}}$$

$$\mathbf{s}_{\mathbf{x}\mathbf{y}} = \sum \left(\frac{\mathbf{X}_{\mathsf{t}}}{\mathbf{X}_{\mathsf{0}}} - \overline{\mathbf{X}}\right) \left(\frac{\mathbf{y}_{\mathsf{t}}}{\mathbf{y}_{\mathsf{0}}} - \overline{\mathbf{Y}}\right) \mathbf{w}_{\mathsf{0}} = \frac{\sum \mathbf{X}_{\mathsf{t}} \mathbf{y}_{\mathsf{t}}}{\sum \mathbf{X}_{\mathsf{0}} \mathbf{y}_{\mathsf{0}}} - \overline{\mathbf{X}} \cdot \overline{\mathbf{Y}}$$

The "usual" theorem (slide 15) is a special case \rightarrow

6. Generalized Theorem of Bortkiewicz

Theorem for the L-effect

$$\frac{X_{t}}{X_{0}} = 1 + \frac{s_{xy}}{\overline{X} \cdot \overline{Y}}$$

$x_0 = p_0$	$y_0 = q_0$	$X_t = P^P$	$C = \sum_{i} \left(\frac{p_{it}}{p} - P_{0t}^{L} \right) \left(\frac{q_{it}}{q} - Q_{0t}^{L} \right) \frac{p_{i0}q_{i0}}{\sum_{i} p_{i0}}$
$x_t = p_t$	$y_t = q_t$	$X_0 = P^L$	

1. for S = S = S

$$S = Q_{0t}^{L} / QU_{0t}^{L}$$

$x_0 = q_0$	$y_0 = 1$	$X_t = Q_{0t}^{L(k)}$	$\sum \left(\frac{q_{kjt}}{\tilde{Q}^k} - \tilde{\tilde{Q}}^k \right) \left(\tilde{p} \right)$	$-\tilde{\mathbf{p}}$) q_{kj0}
$x_t = q_t$	$y_t = p_0$	$X_0 = \widetilde{\mathbf{Q}}_{0t}^k$	$\left(q_{kj0} - Q_{0t}\right) \Psi_1$	$\sum_{kj0} P_{k0} = \sum_{kj0} q_{kj0}$

2. for 1/S

6. Two commodities example with both, S and L effect (example of slide 12)

$$p_{10} = p_{1t} = p$$

 $p_{20} = p_{2t} = \lambda p$
 $\mu = m_{2t}/0.5$
 $m_{10} = m_{20} = 0.5$

$$\pi = p_{1t}/p_{10}$$

 $p_{2t}/p_{20} = \eta \pi$

λ > 1	$\Delta < 0 \rightarrow S < 1$	$\Delta > 0 \rightarrow S > 1$
λ < 1	$\Delta > 0 \rightarrow S > 1$	$\Delta < 0 \rightarrow S < 1$
	μ<1	μ > 1

S-effect	L-effect	$\pi = \eta = 1$
$S = \frac{Q_{0t}^{L}}{\tilde{Q}_{0t}} = 1 + \frac{(1 - \lambda)(1 - \mu)}{1 + \lambda} = 1 + \frac{\Delta}{\tilde{p}_{0}}$	$P_{0t}^{L} = \frac{\pi(1+\eta\lambda)}{1+\lambda}$	= 1
$s_{xy}^{(1)} = \sum_{j} \left(\frac{q_{jt}}{q_{j0}} - \widetilde{Q}_{0t} \right) \left(p_{j0} - \widetilde{p}_{0} \right) \frac{q_{j0}}{\sum_{j} q_{j0}} = \widetilde{Q}_{0t} \Delta$	$P_{0t}^{P} = \frac{\pi(2-\mu+\eta\lambda\mu)}{2-\mu+\lambda\mu}$	= 1
$s_{xy}^{(2)} = \frac{2\tilde{Q}_{0t}(\lambda - 1)(1 - \mu)}{p(1 + \lambda)^2} = -\frac{\Delta}{(\tilde{p}_0)^2}$	$L = \frac{P_{0t}^{P}}{P_{0t}^{L}} = \frac{2 - \mu + \eta \lambda \mu}{1 + \eta \lambda}.$	$\frac{1+\lambda}{2-\mu+\lambda\mu}$

7. Conclusions

	if $\pi = \eta = 1$
$\Delta^* = \widetilde{p}_t - \widetilde{p}_0 = \frac{p}{2} \left[\pi \left(2 - \mu \left(1 - \eta \lambda \right) \right) - (1 + \lambda) \right) \right]$	$\Delta^* = \Delta$
$C = s_{xy}^{(L)} = \frac{2\tilde{Q}_{0t}\lambda(1-\eta)(1-\mu)}{(1+\lambda)^2}$	C = 0

$$\Delta^* = \tilde{p}_t - \tilde{p}_0 = \pi \frac{s_{xy}^1}{\tilde{Q}_{0t}} + \frac{s_{xy}^L (1 + \lambda)^2}{2\tilde{Q}_{0t}} + \pi (1 - \lambda \eta) - (1 - \lambda)$$

7. Future work

- Analysis of the time series of UVIs and PIs on various levels of disaggregation, cointegration and Granger-Causality
- Microeconomic interpretation of S-effect (in terms of utility maximizing behaviour)

No structural change **between** CNs (that is $Q_{k0} = Q_{kt}$) yields

$$V_{0t} = PU_{0t}^P = PU_{0t}^L$$
 and $QU_{0t}^L = QU_{0t}^P = 1$

This is, however, not sufficient for the S-effect to vanish

$$S = Q_{0t}^{L} \neq 1$$

No mean value property of PUP

$$PU^{P} = \sum_{k} \sum_{j} \frac{p_{kjt}}{p_{kj0}} \left(\frac{p_{kj0}q_{kjt}}{\sum \sum_{j} p_{kj0}q_{kjt}^{*}} \right) P^{P} = \sum_{k} \sum_{j} \frac{p_{kj0}q_{kjt}}{\sum_{j} p_{kj0}q_{kjt}^{*}}$$

 $q_{kjt}^* = q_{k_{j0}} \frac{Q_{kt}}{Q_{k0}}$

a fictitious quantity in t

The same applies to Laspeyres
$$PU^{L} = \sum_{k} \sum_{j} \frac{p_{kjt}}{p_{ki0}} \frac{p_{kj0} \left(q_{kjt} \frac{Q_{k0}}{Q_{kt}} \right)}{\sum \sum_{p_{ki0}} q_{ki}}$$

The relation $S = PU^P/P^P$ instead of $S = Q^L/QU^L$ is not interesting

$$PU^{P} = \frac{\sum_{k} \widetilde{p}_{kt} Q_{kt}}{\sum_{k} \widetilde{p}_{k0} Q_{kt}} = \sum_{k} P_{(k)}^{P} \frac{Q_{kt} \sum_{j} p_{kj0} m_{kjt}}{\sum_{k} Q_{kt} \sum_{j} p_{kj0} m_{kj0}}$$

$$P^{P} = \frac{\sum_{k} \sum_{j} p_{kjt} q_{kjt}}{\sum_{k} \sum_{j} p_{kj0} q_{kjt}} = \sum_{k} P^{P}_{(k)} \frac{Q_{kt} \sum_{j} p_{kj0} m_{kjt}}{\sum_{k} Q_{kt} \sum_{j} p_{kj0} m_{kjt}}$$

Sum of weights!

UVI in XMPI Manual

§ 2.14

Drobisch's formula

$$P_{U} = \left(\frac{\sum_{m} p_{m}^{1} q_{m}^{1}}{\sum_{m} q_{m}^{1}}\right) / \left(\frac{\sum_{n} p_{n}^{0} q_{n}^{0}}{\sum_{n} q_{n}^{0}}\right)$$