```
universität
DE US IS S E B N U R G
```


Unit Value Bias (Indices) Reconsidered Price- and Unit-Value-Indices in Germany

Peter von der Lippe, Universität Duisburg-Essen Jens Mehrhoff*, Deutsche Bundesbank

$11^{\text {th }}$ Ottawa Group Meeting (Neuchâtel May 28 ${ }^{\text {th }}$ 2009)

1. Introduction and Motivation
2. Unit value index (UVI) and Drobisch's Index (PUD)
3. Price and unit value indices in German foreign trade statistics (Tests of hypotheses)
4. Properties and axioms (uv, UVI, $\mathbf{P}^{\text {UD }}$)
5. Decomposition of the Unit Value Bias ($\mathrm{PU}^{\mathrm{P}} / \mathbf{P}^{\mathrm{L}} \mathrm{L}$ - and S-effect)
6. Interpretation of the S-effect in terms of covariances (using a generalized theorem of Bortkiewicz)
7. Conclusions

II Export and Import Price Index Manual (XMPI Man. IMF, 2008)

II Unit Value Indices (UVIs) are used in
Prices of trade (export/import), land, air freight and certain services (consultancy, lawyers etc)

I Literature (UVIs cannot replace price indices)
Balk 1994, 1995 (1998), 2005
Diewert 1995 (NBER paper), 2004 etc.
von der Lippe 2006 GER
http://mpra.ub.uni-muenchen.de/5525/1/MPRA _paper_5525.pdf
Silver (2007), Do Unit Value Export, Import, and Terms of Trade Indices Represent or Misrepresent Price Indices, IMF Working Paper WP/07/121

$$
2000 \text { Jan - } 2007 \text { Dec }
$$

- Price indices -- Unit value indices

1. Unit value for the $\mathbf{k}^{\text {th }}$ commodity number (CN)


```
k=1,\ldots.,K Unit values are not definedl over all CNs
```


Examples for CNs

HS (Harmonized System)	Germany (Warenverzeichnis)
190590 Other Bakers' Wares, Communion Wafers, Empty Capsules, Sealing Wafers	19059045 Cakes and similar small baker's wares (8 digits)
23 09 10 Dog or Cat Food, Put up for Retail Sale	$\mathbf{2 3 0 9 1 0 1 1}$ to 23091090 twelve (!!) CNs for dog or cat food

2. German Unit Value Index (UVI) of exports/imports

 the usual Paasche index (unit values instead of prices)$$
P U_{0 \mathrm{t}}^{\mathrm{P}}=\frac{\sum_{\mathrm{k}} \tilde{\mathrm{p}}_{\mathrm{kt}} \mathrm{Q}_{\mathrm{kt}}}{\sum_{\mathrm{k}} \tilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{kt}}}=\frac{\sum_{\mathrm{k}}^{\mathrm{K}} \sum_{\mathrm{j}}^{\mathrm{n}_{\mathrm{k}}} \mathrm{p}_{\mathrm{kjt}} \mathrm{q}_{\mathrm{kjt}}}{\sum_{\mathrm{k}}^{\mathrm{K}} \mathrm{Q}_{\mathrm{kt}}\left(\sum_{\mathrm{j}}^{\mathrm{n}_{\mathrm{k}}} \frac{\mathrm{p}_{\mathrm{kj} 0} q_{\mathrm{kj} 0}}{\mathrm{Q}_{\mathrm{k} 0}}\right)} \begin{aligned}
& \text { Aggregation in two stages; } \\
& \mathrm{k}=1, \ldots, \mathrm{~K}, \\
& \mathrm{j}=1, \ldots, \mathrm{n}_{\mathrm{K}} \\
& \text { in the commodities } \mathrm{k}, \mathrm{CN} ; \quad \sum \mathrm{n}_{\mathrm{k}}=\mathrm{n} \text { (all } \\
& \text { commodities) }
\end{aligned}
$$

3. The Unit value index (UVI) should be kept distinct from Drobisch's index (1871)

Drobisch's index

$$
P_{0 t}^{\mathrm{DR}}=\frac{\tilde{\mathrm{p}}_{\mathrm{t}}}{\tilde{\mathrm{p}}_{0}}=\frac{\mathrm{V}_{0 \mathrm{t}}}{\widetilde{\mathrm{Q}}_{0 \mathrm{t}}}, \quad \tilde{\mathrm{Q}}_{0 \mathrm{t}}=\frac{\mathrm{Q}_{\mathrm{t}}}{\mathrm{Q}_{0}}
$$

However, Drobisch is better known for $\quad \frac{1}{2}\left(\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}+\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}\right)$

	no information about quantities available	information about quantities
the same commodity in different outlets	"normal" usage of the term "low level"	
different goods grouped by a classification		situation of a UVI $(\Sigma \mathrm{q}$ needed for unit value $)$

It does not make sense to consider absolute unit values ("Euro per kilogram")

Austrian Import prices rose from $\approx 20 €$ per kilogram in 1995 to $25 € \ldots$ in 2005

```
Österreichische Importpreisindizes in der Sachgütererzeugung
```


Glatzer et al "Globalisierung..." http://www.oenb.at/de/img/gewi_2006_3_tcm14-46922.pdf
"Because we use weights as units an increasing import price index could be explained by either rising prices or reduced weights due to quality improvement"
$2^{4}=16$ indices:
type of index (price vs quantity)
Prices (p) vs unit values (uv)
Laspeyres vs Paasche

$$
\mathrm{V}=\Sigma \mathrm{p}_{\mathrm{t}} \mathrm{q}_{\mathrm{t}} / \Sigma \mathrm{p}_{0} \mathrm{q}_{0}=\mathrm{P}^{\mathrm{P}} \mathrm{Q}^{\mathrm{L}}=\mathrm{PU}^{\mathrm{P}} \mathrm{QU}^{\mathrm{L}}
$$

Export vs import

	Price-indices		Quantity-indices	
	\mathbf{p}	$\mathbf{u v}$	\mathbf{p}	$\mathbf{u v}$
Laspeyres	$\mathbf{P L}^{\mathrm{L}}$	$\mathbf{P U} \mathbf{L}$	$\mathbf{Q}^{\mathbf{L}}$	$\mathbf{Q U L}$
Paasche	$\mathbf{P P}$	$\mathbf{P U P}$	$\mathbf{Q P}^{\mathbf{P}}$	$\mathbf{Q U P}$

	Price index	Unit value index
Data	Survey based (monthly), sample; more demanding (weights!)	Customs based (by-product), census, Intrastat: survey
Formula	Laspeyres	Paasche
Quality ad- justment	Yes	feasible?)
Prices, aggregates	Prices of specific goods at time of contracting	Average value of CNs; time of crossing border
New / dis- appearing goods	Included only when a new base period is defined; vanishing goods replaced by similar ones constant selection of goods *	Immediately included; price quotation of disappearing goods is simply discontinued variable universe of goods
Merits	Reflect pure price movement (ideally the same products over time)	"Representativity" inclusion of all products; data readily available
Published in	Fachserie 17, Reihe 11	Fachserie 7, Reihe 1

$\mathrm{CN}=$ commodity numbers

* All price determining characteristics kept constant

Price index (P) Unit value index (U)

Hypothesis	Argument
1. $\mathbf{U}<\mathbf{P}$, growing discrepancy	Laspeyres (P) > Paasche (U) Formula of L. v. Bortkiewicz
2. Volatility U >P	U no pure price comparison (U is reflecting changes in product mix [structural changes])
3. Seasonality U >P	U no adjustment for seasonally non-availability
4. \mathbf{U} suffers from heterogeneity	Variable vs. constant selection of goods, CN less homogeneous than specific goods
5. Lead of P	Prices refer to the earlier moment of contracting (contract-delivery lag; exchange rates)
6. Smoothing (due to quality adjustment)	Quality adjustment in P results in smoother series

$$
\begin{aligned}
& \mathrm{p}_{10}=\mathrm{p}_{1 \mathrm{t}}=\mathrm{p} \\
& \mathrm{p}_{20}=\mathrm{p}_{2 \mathrm{t}}=\lambda \mathrm{p} \\
& \mu=\mathrm{m}_{2 \mathrm{t}} / 0.5 \\
& \mathrm{~m}_{10}=\mathrm{m}_{20}=0.5
\end{aligned}
$$

$$
\Delta=\tilde{\mathrm{p}}_{\mathrm{kt}}-\tilde{\mathrm{p}}_{\mathrm{k} 0}=\frac{\mathrm{p}}{2}(1-\lambda)(1-\mu)
$$

$$
\lambda>1 \text { and } \mu>1 \rightarrow \Delta>0
$$

more of the more expensive good 2 unit value rising
$\lambda<1$ and $\mu<1 \rightarrow \Delta>0$
$\lambda<1$ and $\mu>1 \rightarrow \Delta<0$
$\stackrel{\rightharpoonup}{\wedge}$
$\lambda>1$ and $\mu<1 \rightarrow \Delta<0$
less of the more expensive good 2 unit value declining
less of the cheaper good 2
more of the cheaper good 2
unit value declining
$\mu<1$
$\mu>1$
"... 'unit value' indices ... may therefore be affected by changes in the mix of items as well as by changes in their prices. Unit value indices cannot therefore be expected to provide good measures of average price change over time" (SNA 93, § 16.13)

1) UVI mean of uv-ratios

$$
\mathrm{PU}_{0 \mathrm{t}}^{\mathrm{P}}=\sum_{\mathrm{k}} \frac{\widetilde{\mathrm{p}}_{\mathrm{kt}}}{\widetilde{\mathrm{p}}_{\mathrm{k} 0}} \frac{\tilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{kt}}}{\sum_{\mathrm{k}} \tilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{kt}}}
$$

2) Ratio of unit values \neq mean of price relatives

$$
\frac{\tilde{\mathrm{p}}_{\mathrm{kt}}}{\widetilde{\mathrm{p}}_{\mathrm{k} 0}}=\sum_{\mathrm{j}} \frac{\mathrm{p}_{\mathrm{kjt}}}{\mathrm{p}_{\mathrm{k} j 0}}\left(\frac{\mathrm{p}_{\mathrm{kj} 0} \mathrm{q}_{\mathrm{kjt}}}{\widetilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{kt}}}\right)
$$

the weights do not add up to unity, but to

Axioms Drobisch's (price) index and the German UVI (= PUP)

Axiom	Definition	Drobisch*	German PUP
Proportionality	$\mathrm{U}\left(\mathbf{p}_{0}, \lambda \mathbf{p}_{0}, \mathbf{q}_{0}, \mathbf{q}_{t}\right)=\lambda \quad$ (identity $=1$)	no	no
Commensurability	$U\left(\Lambda p_{0}, \Lambda p_{t}, \Lambda^{-1} \mathbf{q}_{0}, \Lambda^{-1} \mathbf{q}_{t}\right)=U\left(p_{0}, p_{t}, \mathbf{q}_{0}, \mathbf{q}_{t}\right)$	no	no
Linear homogen.	$U\left(\mathbf{p}_{0}, \lambda \mathbf{p}_{t}, \mathbf{q}_{0}, \mathbf{q}_{t}\right)=\lambda U\left(\mathbf{p}_{0}, \mathbf{p}_{\mathrm{t}}, \mathbf{q}_{0}, \mathbf{q}_{\mathrm{t}}\right)$	yes	yes
Additivity** (in current period prices)	$\begin{aligned} & U\left(\mathbf{p}_{0}, \mathbf{p}_{\mathrm{t}}^{*}, \mathbf{q}_{0}, \mathbf{q}_{\mathbf{t}}\right)=\mathrm{U}\left(\mathbf{p}_{0}, \mathbf{p}_{\mathrm{t}}, \mathbf{q}_{0}, \mathbf{q}_{\mathrm{t}}\right)+ \\ & \mathrm{U}\left(\mathbf{p}_{0}, \mathbf{p}_{\mathrm{t}}^{+}, \mathbf{q}_{0}, \mathbf{q}_{\mathrm{t}}\right) \text { for } \mathbf{p}_{\mathrm{t}}^{*}=\mathbf{p}_{\mathrm{t}}+\mathbf{p}_{\mathrm{t}}^{+}, \end{aligned}$	yes	yes
Additivity** (in base period prices)	$\begin{aligned} & {\left[\mathrm{U}\left(\mathbf{p}_{0}^{*}, \mathbf{p}_{\mathrm{t}}, \mathbf{q}_{0}, \mathbf{q}_{t}\right)\right]^{-1}=\left[\mathrm{U}\left(\mathbf{p}_{0}, \mathbf{p}_{t}, \mathbf{q}_{0}, \mathbf{q}_{\mathbf{t}}\right)\right]^{-1}} \\ & +\left[U\left(\mathbf{p}^{+}{ }_{0}, \mathbf{p}_{\mathrm{t}}^{\mathrm{t}}, \mathbf{q}_{0}, \mathbf{q}_{\mathrm{t}}\right)\right]^{-1} \text { for } \mathbf{p}_{0}^{*}=\mathbf{p}_{0}+\mathbf{p}_{0} \end{aligned}$	yes	yes
Product test	Implicit quantity index of P ${ }^{\text {UD }}$ or PUP	$\Sigma q_{t} / \Sigma q_{0}$	QU ${ }^{\text {L }}$
Time reversibility	$\begin{aligned} & U\left(\mathbf{p}_{t}, \mathbf{p}_{0}, \mathbf{q}_{t}, \mathbf{q}_{0},\right)=U^{\leftarrow} \\ & =\left[U\left(\mathbf{p}_{0}, \mathbf{p}_{t}, \mathbf{q}_{0}, \mathbf{q}_{t}\right)\right]^{-1}=[U \rightarrow]^{-1} \end{aligned}$	yes	$\begin{aligned} & \hline\left(P U^{P} \leftarrow\right)= \\ & 1 /(P U L \rightarrow) \end{aligned}$
Transitivity	$U\left(\mathbf{p}_{0}, \mathbf{p}_{2}, \mathbf{q}_{0}, \mathbf{q}_{2}\right)=U\left(\mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{q}_{0}, \mathbf{q}_{1}\right) \cdot U\left(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{q}_{1}, \mathbf{q}_{2}\right)$ yes		no

* Balk1995, Silver 2007, IMF Manual; applies also to subindex $\tilde{\mathrm{p}}_{\mathrm{kt}} / \widetilde{\mathrm{p}}_{\mathrm{k} 0}$
** Inclusive of (strict) monotonicity

Value index $V_{0 t}=\mathrm{PU}_{0 \mathrm{t}}^{\mathrm{L}} \mathrm{QU}_{0 \mathrm{t}}^{\mathrm{P}}=\mathrm{PU}_{0 \mathrm{t}}^{\mathrm{P}} \mathrm{QU}_{0 \mathrm{t}}^{\mathrm{L}}$

Bortkiewicz Formula

$$
\begin{aligned}
& \mathrm{C}=\sum_{i}\left(\frac{p_{i t}}{p_{i 0}}-P_{0 t}^{L}\right)\left(\frac{q_{i t}}{q_{i 0}}-Q_{0 t}^{L}\right) \frac{p_{i 0} q_{i o}}{\sum p_{i 0} q_{i o}} \\
& =V_{0 t}-Q_{0 t}^{L} P_{0 t}^{L}=Q_{0 t}^{L}\left(P_{0 t}^{p}-P_{0 t}^{L}\right)
\end{aligned}
$$

Discrepancy (uv-bias)

$$
\mathrm{D}=\frac{\mathrm{PU}_{0 \mathrm{t}}^{\mathrm{P}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}}=\left(\frac{\mathrm{C}}{\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}} \mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}}+1\right)\left(\frac{\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}}}{\mathrm{QU}_{0 t}^{\mathrm{L}}}\right)=\frac{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{p}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}} \cdot \frac{\mathrm{PU}_{0 \mathrm{t}}^{\mathrm{P}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}}=\mathrm{L} \cdot \mathrm{~S}
$$

Ladislaus von Bortkiewicz (1923)

$$
\mathrm{L}=\frac{\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{P}}}{\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}}}=\frac{\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{P}}}{\mathrm{~S} \cdot \mathrm{QU}_{0 t}^{\mathrm{L}}}=\frac{\mathrm{PU}_{0 \mathrm{t}}^{\mathrm{P}}}{\mathrm{~S} \cdot \mathrm{P}_{0 t}^{\mathrm{L}}} \quad \mathrm{~S}=\frac{\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}}}{\mathrm{QU}_{0 t}^{\mathrm{L}}}=\frac{\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{P}}}{\mathrm{~L} \cdot \mathrm{QU}_{0 t}^{\mathrm{L}}}=\frac{\mathrm{PU}_{0 \mathrm{t}}^{\mathrm{P}}}{\mathrm{~L} \cdot \mathrm{P}_{0 t}^{\mathrm{L}}}
$$

In I and III we can combine two inequalities

	$\mathbf{S}<\mathbf{1}$	$\mathbf{S}=\mathbf{1}$	$\mathbf{S}>\mathbf{1}$
$\mathbf{L}>\mathbf{1}$	II. indefinite	$\mathrm{PU}^{\mathrm{P}}>\mathrm{P}^{\mathrm{L}}$	I. $\mathrm{PU}^{\mathrm{P}}>\mathrm{P}^{\mathrm{P}}>\mathrm{P}^{\mathrm{L}}$
$\mathbf{L}=\mathbf{1}$	$\mathrm{PU}^{\mathrm{P}}<\mathrm{P}^{\mathrm{L}}=\mathrm{P}^{\mathrm{P}}$	$\mathrm{PU}^{\mathrm{P}}=\mathrm{P}^{\mathrm{P}}=\mathrm{P}^{\mathrm{L}}$	$\mathrm{PU}^{\mathrm{P}}>\mathrm{P}^{\mathrm{L}}=\mathrm{P}^{\mathrm{P}}$
$\mathbf{L}<\mathbf{1}$	$\mathrm{IIII}^{\mathrm{P}} \mathrm{PU}^{\mathrm{P}}<\mathrm{P}^{\mathrm{P}}<\mathrm{P}^{\mathrm{L}}$	$\mathrm{PU}^{\mathrm{P}}<\mathrm{P}^{\mathrm{L}}$	IV. indefinite

Deflator X and M respectively taken for P^{P}
S and L independent?

- Laspeyres effect (\% pt) -- Structural component (\% pt) \cdots Discrepancy (\%)

5. The two effects L and S-3- Time path of S-L- pairs (left \rightarrow right)

Normal reaction:
L and S negative more likely in the case of imports
exports

imports

Interpretation L-Effect: contributions to the covariance (Szulc)

$$
\begin{aligned}
& R= \frac{P_{p}-P_{L}}{P_{L}}=\sum_{i}\left[\left(\frac{p_{i}^{1} / p_{i}^{0}-P_{L}}{P_{L}}\right) \cdot\left(\frac{q_{i}^{1} / q_{i}^{0}-Q_{L}}{Q_{L}}\right) \cdot\left(\frac{p_{q_{i}^{0}}^{0}}{\sum p_{i}^{0} q_{i}^{0}}\right)\right] \\
& R \text { a "centred" covariance } \frac{s_{X Y}}{\bar{X} \cdot \bar{Y}} \quad L=R+1
\end{aligned}
$$

A. Chaffe, M. Lequain, G. O'Donnell, Assessing the Reliability of the CPI Basket Update in Canada Using the Bortkiewicz Decomposition, Statistics Canada, September 2007

No L-effect ($L=1$) if

1. all $\mathrm{p}^{1 / \mathrm{p}^{0}}$ equal $\left(\mathrm{P}_{\mathrm{L}}\right)$ or $=1$
2. all $\mathrm{q}^{1 / q^{0}}=\mathrm{Q}_{\mathrm{L}}$ or $=1$
3. covariance $=0$

No S-effect ($\mathrm{S}=\mathrm{Q}^{\mathrm{L}} / \mathrm{QU}^{\mathrm{L}}=1$) if

1. no CNs, only individual goods (or: each $\mathrm{n}_{\mathrm{k}}=1$, perfectly homogeneous CNs)
2. all $q^{1 / q^{0}}$ equal $(o r=1)$ 3. all $m_{k j t}=m_{k j 0}$ $\forall \mathrm{j}, \mathrm{k}$ 4. all prices 5. all quantities in 0 are equal prices in \mathbf{t} are irrelevant
3. Contribution of a $\mathbf{C N}(k)$ to S as ratio of two linear indices
4. $\mathrm{S}=\frac{\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}}}{\mathrm{QU}_{0 \mathrm{t}}^{\mathrm{L}}}=\sum_{\mathrm{k}} \frac{\mathrm{Q}_{0 t}^{\mathrm{L}(\mathrm{k})}}{\widetilde{\mathrm{Q}}_{0 \mathrm{t}}^{\mathrm{k}}} \cdot \frac{\widetilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{kt}}}{\sum_{\mathrm{k}} \tilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{kt}}}$
5. Generalized theorem of Bortkiewicz
for two linear indices X_{t} and $X_{0} \quad X_{t}=\frac{\sum x_{1} y_{t}}{\sum x_{0} y_{t}} \quad X_{0}=\frac{\sum x_{1} y_{0}}{\sum x_{0} y_{0}}$
$\frac{X_{t}}{X_{0}}=1+\frac{s_{x y}}{\bar{X} \cdot \bar{Y}}$

$$
\mathrm{w}_{0}=\mathrm{x}_{0} \mathrm{y}_{0} / \sum \mathrm{x}_{0} \mathrm{y}_{0}
$$

$$
\sum \frac{\mathrm{x}_{\mathrm{t}}}{\mathrm{x}_{0}} \mathrm{w}_{0}=\overline{\mathrm{X}}=\mathrm{X}_{0}
$$

$s_{x y}=\sum\left(\frac{x_{t}}{x_{0}}-\bar{X}\right)\left(\frac{y_{t}}{y_{0}}-\bar{Y}\right) w_{0}=\frac{\sum x_{t} y_{t}}{\sum x_{0} y_{0}}-\bar{X} \cdot \bar{Y}$
The "usual" theorem (slide 15) is a special case \rightarrow

Theorem for the L-effect $\quad \frac{X_{t}}{X_{0}}=1+\frac{S_{x y}}{\bar{X} \cdot \bar{Y}}$

$x_{0}=p_{0}$	$y_{0}=q_{0}$	$X_{t}=P^{P}$	$=\sum_{i}\left(\frac{p_{i t}}{p_{i 0}}-P_{0 t}^{L}\right)\left(\frac{q_{i t}}{q_{i 0}}-Q_{0 t}^{L}\right) \frac{p_{i 0} q_{i 0}}{\sum p_{i 0} q_{i 0}}$
$x_{t}=p_{t}$	$y_{t}=q_{t}$	$X_{0}=P^{L}$	

1. for $S \quad S=Q_{0 t}^{L} / \mathrm{QU}_{0 t}^{\mathrm{L}}$

$x_{0}=q_{0}$	$y_{0}=1$	$x_{t}=Q_{0 t}^{L(k)}$	$\sum\left(\frac{q_{k j t}}{q_{k j 0}}-\widetilde{Q}_{0 t}^{k}\right)\left(p_{k j 0}-\tilde{p}_{k 0}\right) \frac{q_{k j 0}}{\sum q_{k j 0}}$
$x_{t}=q_{t}$	$y_{t}=p_{0}$	$x_{0}=\widetilde{Q}_{0 t}^{k}$	

2. for $1 / \mathrm{S}$

$$
\begin{array}{|l|l|l|l|}
\hline x_{0}=q_{0} & y_{0}=p_{0} & x_{t}=\widetilde{Q}_{0 \mathrm{t}}^{k} & \sum\left(\frac{q_{k j t}}{q_{k j 0}}-Q_{0 t}^{L(k)}\right)\left(\frac{1}{p_{k j 0}}-\frac{1}{\tilde{p}_{k 0}}\right) \frac{p_{k j 0} q_{k j 0}}{\sum p_{k j 0} q_{k j 0}} \\
\hline x_{t}=q_{t} & y_{t}=1 & x_{0}=Q_{0 t}^{L(k)} & \\
\hline
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{p}_{10}=\mathrm{p}_{1 \mathrm{t}}=\mathrm{p} & \pi=\mathrm{p}_{1 \mathrm{t}} / \mathrm{p}_{10} \\
\mathrm{p}_{20}=\mathrm{p}_{2 \mathrm{t}}=\lambda \mathrm{p} & \mathrm{p}_{2 \mathrm{t}} / \mathrm{p}_{20}=\eta \pi \\
\mu=\mathrm{m}_{2 \mathrm{t}} / 0.5 & \\
\mathrm{~m}_{10}=\mathrm{m}_{20}=0.5 &
\end{array}
$$

$\lambda>\mathbf{1}$	$\Delta<0 \rightarrow \mathrm{~S}<1$	$\Delta>0 \rightarrow \mathrm{~S}>1$
$\lambda<\mathbf{1}$	$\Delta>0 \rightarrow \mathrm{~S}>1$	$\Delta<0 \rightarrow \mathrm{~S}<1$
	$\mu<\mathbf{1}$	$\mu>\mathbf{1}$

S-effect	L-effect	$\pi=\eta=1$
$S=\frac{Q_{0 t}^{L}}{\widetilde{Q}_{0 t}}=1+\frac{(1-\lambda)(1-\mu)}{1+\lambda}=1+\frac{\Delta}{\widetilde{p}_{0}}$	$P_{0 t}^{L}=\frac{\pi(1+\eta \lambda)}{1+\lambda}$	$=1$
$s_{x y}^{(1)}=\sum_{j}\left(\frac{q_{j t}}{q_{j 0}}-\widetilde{Q}_{0 t}\right)\left(p_{j 0}-\tilde{p}_{0}\right) \frac{q_{j 0}}{\sum q_{j 0}}=\widetilde{Q}_{0 t} \Delta$	$P_{0 t}^{P}=\frac{\pi(2-\mu+\eta \lambda \mu)}{2-\mu+\lambda \mu}$	$=1$
$s_{x y}^{(2)}=\frac{2 \widetilde{Q}_{0 t}(\lambda-1)(1-\mu)}{p(1+\lambda)^{2}}=-\frac{\Delta}{\left(\tilde{p}_{0}\right)^{2}}$	$L=\frac{P_{0 t}^{P}}{P_{0 t}^{L}}=\frac{2-\mu+\eta \lambda \mu}{1+\eta \lambda} \cdot \frac{1+\lambda}{2-\mu+\lambda \mu}$	

	if $\pi=\eta=1$
$\left.\Delta^{*}=\tilde{\mathrm{p}}_{\mathrm{t}}-\tilde{\mathrm{p}}_{0}=\frac{\mathrm{p}}{2}[\pi(2-\mu(1-\eta \lambda))-(1+\lambda))\right]$	$\Delta^{*}=\Delta$
$\mathrm{C}=\mathrm{s}_{\mathrm{xy}}^{(\mathrm{L})}=\frac{2 \widetilde{\mathrm{Q}}_{0 \mathrm{t}} \lambda(1-\eta)(1-\mu)}{(1+\lambda)^{2}}$	$\mathrm{C}=0$
$\Delta^{*}=\tilde{\mathrm{p}}_{\mathrm{t}}-\tilde{\mathrm{p}}_{0}=\pi \frac{\mathrm{s}_{\mathrm{xy}}^{1}}{\widetilde{\mathrm{Q}}_{0 \mathrm{t}}}+\frac{\mathrm{s}_{\mathrm{xy}}^{\mathrm{L}}(1+\lambda)^{2}}{2 \widetilde{\mathrm{Q}}_{0 \mathrm{t}}}+\pi(1-\lambda \eta)-(1-\lambda)$	

7. Future work

- Analysis of the time series of UVIs and PIs on various levels of disaggregation, cointegration and Granger-Causality
- Microeconomic interpretation of S-effect (in terms of utility maximizing behaviour)

No structural change between CNs (that is $\mathrm{Q}_{\mathrm{k} 0}=\mathrm{Q}_{\mathrm{kt}}$) yields

$$
\mathrm{V}_{0 \mathrm{t}}=\mathrm{PU}_{0 \mathrm{t}}^{\mathrm{P}}=\mathrm{PU}_{0 \mathrm{t}}^{\mathrm{L}} \text { and } \mathrm{QU}_{0 \mathrm{t}}^{\mathrm{L}}=\mathrm{QU}_{0 \mathrm{t}}^{\mathrm{P}}=1
$$

This is, however, not sufficient for $S=Q_{0 t}^{L} \neq 1$ the S-effect to vanish

No mean value property of PU^{P}

$$
\begin{aligned}
& P U^{P}=\sum_{k} \sum_{j} \frac{p_{k j t}}{p_{k j 0}}\left(\frac{p_{k j 0} q_{k j t}}{\sum \sum p_{k j} q_{k i t}}\right) \\
& P^{p}=\sum_{k} \sum_{j} \frac{p_{k j i}}{p_{k j 0}}\left(\frac{p_{k j 0} q_{k j t}}{\sum \sum p_{k j 0} q_{k j i}}\right)
\end{aligned}
$$

The relation $\mathrm{S}=\mathrm{PU}^{\mathrm{P}} / \mathrm{P}^{\mathrm{P}}$ instead of $\mathrm{S}=\mathrm{Q}^{\mathrm{L}} / \mathrm{QU}^{\mathrm{L}}$ is not interesting

$$
\begin{aligned}
& P U^{P}=\frac{\sum_{k}^{k} \tilde{p}_{k t} Q_{k t}}{\sum_{k} \tilde{p}_{k 0} Q_{k t}}=\sum_{k} P_{(k)}^{P} \frac{Q_{k t} \sum_{j} p_{k j 0} m_{k j t}}{\sum_{k} Q_{k t} \sum_{j} p_{k j 0} m_{k j 0}} \quad P^{P}=\frac{\sum_{k} \sum_{j} p_{k j t} q_{k j t}}{\sum_{k} \sum_{j} p_{k j 0} q_{k j t}}=\sum_{k} P_{(k)}^{P} \frac{Q_{k t} \sum_{j} \sum_{k j 0} \mathrm{p}_{k j} \mathrm{~m}_{k j t}}{\sum_{j} p_{k j 0} m_{k j t}} \\
& \text { Sum of weights! }
\end{aligned}
$$

UVI in XMPI
 Manual

§ 2.14
Drobisch's formula

$$
P_{U}=\left(\frac{\sum_{m} p_{m}^{1} q_{m}^{1}}{\sum_{m} q_{m}^{1}}\right) /\left(\frac{\sum_{\mathrm{n}} \mathrm{p}_{\mathrm{n}}^{0} \mathrm{q}_{\mathrm{n}}^{0}}{\sum_{\mathrm{n}} \mathrm{q}_{\mathrm{n}}^{0}}\right)
$$

