Rechenbeispiel mit EViews für Regression mit zwei Regressoren ("Düngerbeispiel" bei L. v. Auer)

1. Dateneingabe (Achtung: bei diesem Beispiel handelt es sich um Querschnittsdaten)

Das Rechenbeispiel ist im Lehrbuch von L. v. Auer unter Tabelle 8.2 zu finden und in dem Buch wird hierauf immer wieder Bezug genommen unter den "Numerischen Illustrationen" Nr. 9.1 bis 9.9, aber auch in Kapitel 10. Die Variablen sind wie folgt bezeichnet

PHOS1	$x_{1t} = ln(p_t) = logarithmierter Phosphat-Input$
NIT2	$X_{2t} = In(n_t) = Iogarithmierter Stickstoff^*-Input$
GER	yt = logarithmierter Gerste-Output

* Nitrogenium = Stickstoff

Als screen shot für die eingegebenen Daten erhält man das folgende Bild:

die Obtode Violu Uroc Ouldk Optione Wi	1 111				
aic Object view Proc Qaick Options wi	ndow Help				
		WONLIER			
Workfile: DÜNGERBEISPIE		D: VUNAUER	workmie: DUNG		
Proc Object Print Save Details+/- Show	Fe View Proc	Object Print Na	ame Freeze Defa	ault 🖌 🖌 Sort 🛛	Transpo
nge: 1.30 30 obs Display Filter:	* obs	PHOS1	NIT2	GER	
mple: 1 30 30 obs	1	3.091000	3.688900	3.647000	^
C.	2	3.091000	4.094300	3.892400	
ger	3	3.091000	4.499800	4.092200	
nit2	4	3.091000	4.787500	4.083500	
phos1	5	3.135500	3.912000	3.816600	
resid	6	3.135500	4.382000	3.974600	
vonauer	7	3.135500	4.605200	4.035100	13
Untitled / New Page /	8	3.135500	4.787500	3.930100	
	9	3.178100	3.688900	3.803800	_
Ť	10	3.178100	4.094300	3.990100	
	11	3.178100	4.499800	4.100000	
	12	3.178100	4.787500	4.064100	
Workfile-Liste ein Basis-	13	3.218900	3.912000	3.942000	
bestandteil und eine Art	14	3.218900	4.382000	4.070400	
Inhaltsverzeichnis des	15	3.218900	4.605200	4.047800	
Workfiles mit allen Obiek-	16	3.218900	4.700500	4.086800	
ton" (d b Variablan dar	17	3.258100	3.912000	4.011700	
	18	3.258100	4.248500	3.991400	
Gruppe G, benannten	19	3.258100	4.499800	4.198300	
Gleichungen etd). resid	20	3.258100	4.700500	4.122900	
und c (Absolutglied der	21	3.295800	3.688900	3.891600	
Regression) sind automa-	22	3.295800	4.094300	3.996000	
tisch vom Programm an-	23	3.295800	4.382000	4.065300	=
gelegte Variablen.	24	3.295800	4.605200	4.140100	
geregterennen	25	3.332200	3.912000	3.927100	_
Diese Liste nicht während	26	3.332200	4.248500	3.942400	
der Arbeit mit dem reten v	27	3.332200	4.605200	4.084100	
	28	3.332200	4.700500	4.222000	
loscnen.	29	3.367300	4.094300	4.081800	
	30	3.367300	4.605200	4.165000	
		<	ш		>

Bei der (hier manuellen, nicht aus einer Datei übernommenen) Dateneingabe beachten:

Start mit File-New-Workfile(WF) beginnen. Es erscheint ein Fenster "Workfile Create". Dort Art der Daten (Zeitreihen, Querschnittdaten etc.) eingeben und WF einen Namen geben (hier

"Düngebeispiel"). Dann Object-New Object¹-Series, die einzelnen Reihen benennen² (sonst kann man keine group definieren, denn dort wird eine list of series verlangt [Eingabe der Liste mit blancs]). Bei Zahleneingabe achten auf den "Edit +/-" toggle Schalter: Edit-Modus + heißt Eingabemodus, Edit - ist der protection mode.

2. Überprüfung der Eingabe

3. Regressionsgleichung

Es gibt mindestens vier Möglichkeiten die Regressionsfunktion zu bestimmen:

- 1. mit quick (obere Befehlsleiste) generate series by equation
- 2. mit genr oder
- 3. mit proc (untere Befehlsleiste) dann "make equation" oder über
- object (unten) new object equation (beste Möglichkeit)

Die Gleichung selbst wird wie folgt eingegeben (mit blancs ohne Komma und = Zeichen)

Man erkennt jetzt auf dem screen shot umseitig die in der "Numerischen Illustration 9.1" des Lehrbuchs von v. Auer mitgeteilten Werte wieder (mit geringen Abweichungen):

¹ Ein object ist in EView eine Zeitreihe, eine Gruppe (group, also mehrere Zeitreihen), eine Gleichung, Graphik, Tabelle oder auch ein Text etc. ² Default ist series01, series02,...Name nach Eingabe wählen mit "name".

 $\hat{\alpha} = 0,95423$ $\hat{\beta}_1 = 0,59652$ (hier 0,596557 statt 0,59652) und $\hat{\beta}_2 = 0,26255$.

Wie man hier sieht, haben der Workfile und die Graphik einen Namen, die Gleichung aber nicht. Die drei Variablen (ger, phos1 und nit2) gehören zur group "vonauer".

Workfil	Group View Proc	p: VOI Objec	NAUERBILD Workfile: t) Print Name Freeze) Sa	DÜNGERBEIS imple Sheet Sta	SPIEL::Untitle ats Spec	ed\ 💶 🗖		
Range: 1 30 Filte Sample: 1 30 30 c	5.0-		Equation: UNTITL	ED Workfile	: DÜNGERBEI	SPIEL::Untit	iled\	
C Ger Ger nit2 phos1 Vesid vonauerbild Vontitled New Pa	4.5-		View Proc Object Print Name Freeze Estimate Forecast Stats Resids Dependent Variable: GER Method: Least Squares Date: 12/06/07 Time: 14:40 Sample: 1 30 Included observations: 30					
	4.0- 3.5- 3.0-		Variable	Coefficient	Std. Error	t-Statistic	Prob.	
		/	C PHOS1 NIT2	0.954231 0.596557 0.262547	0.469452 0.137885 0.033998	2.032651 4.326474 7.722382	0.0520 0.0002 0.0000	
			R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.742734 0.723677 0.065213 0.114825 40.91500 1.751025	Mean depen S.D. depend Akaike info Schwarz crit F-statistic Prob(F-statis	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)		
		34						

Man erkennt auch im Computer-Ausdruck leicht die in der "Numerischen Illustration 9.2" angegebenen Werte R² = 74,3% (0,742734) sowie $S_{\hat{n}\hat{n}} = 0,11481.S_{\hat{n}\hat{n}}$ ist die sum of squared residuals (0,114825). Mit dieser Größe kann man die Varianzzerlegung (F-Test) und die Standardabweichung der Schätzung (S.E. of regression), als Symbol $\hat{\sigma}$, über die geschätzte Varianz der Stör-

größe $\hat{\sigma}^2$ wie folgt errechnen $\hat{\sigma}^2 = \frac{S_{\hat{u}\hat{u}}}{T-K-1}$, wobei hier T-K-1 = 30 - 2 - 1 = 27 ist. Wie man sieht

ist $\hat{\sigma}^2$ = 0,114825/27 = 0,00425278 und damit ist $\hat{\sigma}$ = 0,0652133 (der [standard error] S.E.of rearession).

Der "equation-output"³ zeigt auch die (geschätzten) Standardabweichungen der Regressionskoeffizienten, aus denen sich dann die (geschätzten) Varianzen der Koeffizienten (vgl. "Numerische Illustration 9.4") errechnen lassen

 $\hat{\sigma}_{\hat{\alpha}}^2 = (0,469452)^2 = 0,220385 \text{ (bei v. Auer 0,22037) }, \\ \hat{\sigma}_{\hat{\beta}_1}^2 = (0,137885)^2 = 0,0190123 \text{ (bei v.A.:} \\ 0,01901) \text{ und } \\ \hat{\sigma}_{\hat{\beta}_2}^2 = (0,033998)^2 = 0,00115586 \text{ (bei von Auer: 0,00116).}$

Wie man an den t-Werten (und prob values) sieht ist a nicht auf dem 5% Niveau gesichert, die anderen Koeffizienten sind dagegen hochsignifikant.

Der von EViews errechnete **F-Wert** für das Testen der Hypothese H₀: $\beta_1 = \beta_2 = 0$ in Höhe von 38,97478 findet sich auch als ≈ 38,98 bei v. Auer (siehe Numerische Illustration 10.9). Auch hier zeigt der prob-value ("Prob(F statistic)") in Höhe von 0,000000, dass H₀ (Annahme der Irrelevanz beider Regressoren) mit weniger als 1% (also 0,001) Irrtumswahrscheinlichkeit (Signifikanzniveau) verworfen (rejected) werden kann [denn 0,001 > Prob(F statistic) = 0,000000] abgelehnt. Die

³ Man erkennt auch das Datum, an dem ich die Berechnung durchgeführt habe (6. Dez. 2007 um 14:40 Uhr).

Einflussgrößen PHOS (x_1) und NIT (x_2) sind also *einzeln* (t-Test) *und in ihrer Gesamtheit* (F-Test) signifikant (nicht irrelevant).

4. Ergänzungen

Die Funktionen Estimate⁴, Forecast und Resids bieten weitere Möglichkeiten, von denen im Folgenden nur auf die Graphik zur Beurteilung der Anpassung und der Verteilung der (geschätzten) Störgröße (also der Residuen) eingegangen werden soll.

Weitere Informationen über die Variablen (z.B. Mittelwerte, Varianzen) und auch über die Korrelation der Regressoren untereinander erhält man mit der Taste **View**

Resids liefert die folgende Graphik⁵

In diesem Beispiel ist die Graphik der Residuen und insbesondere die Funktion **Forecast** nicht sonderlich instruktiv, weil wir es hier mit Querschnittsdaten (Versuchsfelder Nr. 1 bis 30) und nicht mit Zeitreihen zu tun haben.

⁴ Hier kann man z.B. Korrekturen wegen Heteroskedastizität (Newey West Schätzung usw.) vornehmen.

⁵ Die Graphik ist nicht benannt (Graph untitled)), wollte man mehrere Graphiken machen und sie auch weiter bearbeiten (siehe die hier relevanten Befehle, z.B, "add text") und nach Beendigung der Sitzung erhalten lassen wäre es besser, ihr einen Namen zu geben.