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Chapter 3  Axioms and more index formulas 

3.1. The axiomatic approach, some theorems and fundamental axioms 

What is an axiom? 

(3.1.1) ϕ(y,x) = [ϕ(x,y)]
-1

 (a functional equation) 

Example: the function xy =  would not fulfil this since then y1x ≠  but rather x = y
2
. 

Figure 3.1.2: Types of axiomatic approaches 

approaches 

 

constructive approach  deductive approach 

given: formulas,  

to search for: axioms to explore 

properties of the formulas 

 given: axioms,  

to search for: the class of formu-

las that fits the axioms 

 

to compare systems of axioms with respect to 

their appropriateness for certain purposes 

 to "characterise" an index func-

tion (uniqueness theorems) 

A system of axioms A1, A2, … has to be consistent and independent: How to prove 

consistency independence 

inconsistency dependence 

 

 easy to prove  difficult to prove  
 

Quantum theory of index formulas 

Irving Fisher's "five tines fork" 
 

biased upwards (2 + ) uppermost, (1 + ) mid-upper 

neutral (0) middle (unbiased) 

biased downwards (1 - ) mid-lower, (2 - ) lower most 
 

Irving Fisher's seven grades quality scale (see sec. 2.2) 
 

1. worthless, 2. weak, 3. correct, 4. good, 5. very good, 6. excellent, 7. superlative 

A tentative list and grouping of axioms 
 

Most of the controversies in index theory concerning the superiority or inferiority of certain index 

formulas are directly related to the different significance authors attribute to the same axiom. 

As will be shown below our (most positive) assessment of traditional formulas like Laspeyres and 

Paasche as opposed to Fisher' "ideal index" (vigorously advocated by other authors) is a conse-

quence of much less emphasis we are willing to give to axioms like time reversibility or the so-

called "quantity reversal test"13 than others do. 

                                                 
13 This is "test" T12 in tab. 3.1.1. Especially Diewert sets great store by these properties and he therefore rejects 

the traditional formulas. T12 for example rules out all formulas other than those in which quantities of 0 and t 

enter the formula in a symmetric manner (interestingly all so-called superlative indices are of precisely this type, 

i.e. complying with T12). 
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Note also that in addition to axioms that apply to the index itself axioms may be postulated apply 

to the growth rate of the index in question. 

 

 

Table 3.1.1: List of "tests"/axioms of price index functions P(p0, q0, pt, qt) 

(B.∗,T∗ refer to Diewert's list of  20 or 21 tests, and F∗ to Fisher's system of tests) 

 Name of test Comment 
 

 

Group B.1: Basic tests 
 

T1 Positivity P0t = P(...) and all constituent vectors are positive  

T2 Continuity P(...) is a continuous function of its vectors  

F1 Determinate (determinateness) test 

or weak continuity axiom 

if any scalar argument in P(...) tends to zero, then 

P tends to a unique positive real number 

T3 

F2 

Identity P00 = 1 (or: Constant 

prices test) 

P(p0, q0, pt, qt) = 1 if for all i = 1, 2,..., n com-

modities pit = pi0 
1)

 

T4 Fixed basket test (= Constant quanti-

ties test) 
P(p0, q0, pt, q0) = V0t 

 

 

Group B.2: Homogeneity tests 
 

T5 

F3 

proportionality (strict version) in 

current prices P(p0, q0, λp0, qt) = λ  
if all prices move in proportion, so does the index, or: 

if all period t prices change λ-fold then the value of P 

is also changed by λ 
(λ ∈ IR )

2)
 

F3a weak version P(p0, q0, λp0, q0) = λ = F3 provided quantities do not change qt = q0 

T6 Inverse proportionality in p0  P(λp0, q0, p0, qt) = 1/λ 

T7 Invariance to proportional changes 

in current quantities 
P(p0, q0, p0, λqt) = P(p0, q0, p0, qt) 

T8 Invariance to proportional changes 

in base quantities 
P(p0, λq0, p0, qt) = P(p0, q0, p0, qt) 

 

Note that Diewert's definition of "proportionality" resembles the notion of linear homogeneity: 
 

(T5) proportionality in current prices 

P(p0,q0,λpt,qt) = λ P(p0,q0,pt,qt) 

if all current period prices are multiplied by λ > 0 

the new price index is λ times the old price ind. 
3)

  

(T6) Inverse proportional. in prices p0 P(λp0, q0, pt, qt) = 1/λ P(.p0, q0, pt, qt) 

 

 

Group B.3: Invariance and symmetry tests 
 

T9 Commodity reversal test invariance upon changes in the ordering of com.  

T10

F4 

Invariance to changes in the units 

of measurem. = commensurability  

independence of the quantities to which price 

quotations refer (i.e. units of measurement)
4)

 

T11

F5 

Time/country reversal  

P(p0, q0, pt, qt) P(pt, qt, p0, q0) = 1  

interchanging (q0,p0) ↔ (qt,pt), i.e. reversing the 

direction of comparison yields Pt0 = 1/P0t  

T12 Quantity reversal test (quantities of 

both periods must enter symmetrically 

the index formula) 

P(p0, qt, pt, q0) = P(p0, q0, pt, qt) index remains 

invariant upon interchanging of quantity vectors 

T13  Price reversal test PRT (obviously 

different from PRT in sec. 3.2)
5
 

quantity index remains invariant upon inter-

changing of price vectors 
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Group B.4: Mean value tests 
 

T14 Mean value test for prices (often 

simply called: Mean value test) 
P0t lies between minimum and maximum price 

relative 

T15 Mean value test for quantities implicit Q0t lies between min and max quantity relative 

T16 Paasche + Laspeyres bounding test P
P
 ≤ P0t ≤ P

L
 or P

L
 ≤ P0t ≤ P

P
 

 

 

Group B.5: Monotonicity
 6)

 tests 
 

T17 Monotonicity in current prices if any pit increases (pit > pi0) P0t increases (P0t > 1) 

T18 Monotonicity in base period prices if any pi0 increases P0t must decrease 

T19 Monotonicity in current quantities implicit Q0t must increase if any qit increases 

T20 Monotonicity in base quantities implicit Q0t must decrease if any qi0 increases 
 

 

Other tests, additivity (aggregative)
8)

 properties 
 

T21

F6 

Factor reversal P0tQ0t = V0t Q0t = P(q0,p0,qt,pt) if P0t = P(p0,q0,pt,qt) that is Q0t 

is derived from P0t by interchanging prices and quantities 
7)
 

F7 Circular test (see sec. 3.2) also called transitivity test or chain test 

F8 Withdrawal-and-entry test 
9)

 and 

equality test (see sec. 5.2) 

Index should remain invariant if a price relative or sub-in-

dex is added or removed which is equal to the overall index  

 Aggregative consistency of the 

index formula (see sec. 5.2) 

Aggregation of relatives to subindices and subin-

dices to the overall index follow same function 
10)

 

 Structural consistency of volumes 

(deflated values), SCV in sec. 5.2 

Using P0t as deflator should result in volumes that 

satisfy the same definitional equations values do 

1) or: P(p0,pt) = 1 for an index not depending on quantities. 

2) note that identity is obviously the special case λ = 1. 

3) or: the price index function is (positively) homogenous of degree one in the components of the current pe-

riod price vector pt. 

4) We first referred to the commensurability test/axiom in connection with Dutot's index (see sec. 1.2). 

5) According to Diewert the indices of Laspeyres (P
L
) and Paasche fail this test while they are able to pass the 

differently defined PR-Test in sec. 3.2. 

6) What is defined here is strictly speaking weak monotonicity as opposed to strict monotonicity 

7) otherwise product test. 

8) The purpose of these tests is to make sure that the overall-index can be compiled from sub-indices or be de-

composed into sub-indices without difficulties and that aggregation and deflation yields reasonable results. 

9) rarely mentioned at all; to be discussed in the appendix and (along with the equality test) in sec. 5.2/4. 

10) with weights adjusted appropriately to the aggregation problem in question. 
 

Commensurability can be expressed as follows 

(3.1.2) P Pt t t t( , , , ) ( , , , )Lp L q Lp L q p q p q1 1
0 0 0 0

− − =  

where L is a n × n diagonal matrix with elements λ λ1 ,..., n , such that  

L =



















λ

λ

λ

1

2

0 0

0 0

0 0

...

...

... ... ... ...

... n

and L− =



















1

1

2

1 0 0

0 1 0

0 0 1

/ ...

/ ...

... ... ... ...

... /

λ

λ

λ n

 

When commensurability is satisfied the index function can be expressed in price relatives.  
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L =



















1 0 0

0 1 0

0 0 1

10

20

0

/ ...

/ ...

... ... ... ...

... /

p

p

pn

 with main diagonal elements 1/pi0. 

Then we obtain  

Lp0 = 1, where 1' = [1 1 ... 1] and  

Lpt = a, the vector of price relatives a' = [p1t/p10  p2t/p20  ...  pnt/pn0] . Furthermore 

L q v− =1
0 0  the vector of base period values v0' =.[p10 q10  p20 q20  ...  pn0 qn0] and 

L q v− =1
t t  the vector of volumes vt' = [p10 q1t  p20 q2t   ...  pn0 qnt] .  

(3.1.3) P( ,p q p q a v v0 0 t t 0 t, , ) =  P( , , ) , 

By (price) dimensionality or homogeneity of degree 0 in prices  

(3.1.4) P( , ,λ λp q p q p q p q0 0 t t 0 0 t t, , ) =  P( , , )  (price) dimensionality. 

In combination with commensurability quantity dimensionality is implied: 

if price dimensionality and 

commensurability is met 

 then also quantity 

dimensionality 

Quantity dimensionality (also called "weak commensurability ") is defined as follows 

(3.1.5) P Pt t t t( , , , ) ( , , , )λ λ λ λp q p q p q p q1
0

1
0 0 0

− − = , 

The idea of the "identity test" has been introduced by Laspeyres. As already explained above  

identity: if no price changes the price index function should be 1 (unity).  

(3.1.6) strict identity P(p q p q0 0 0 t, , , ) =  1, if p pt = 0  

(3.1.6a) weak identity 1 = ),,,(P 0000 qpqp ,  where p pt = 0 and q qt = 0  

A statement to be regarded in a certain sense as the "opposite" of identity is: 

if any one single price taken in isolation* is rising (or declining), the index 

function should not be 1 but indicate a rise or decline. 

* hence also the case of all prices or some prices is covered. 

This is guaranteed by the monotonicity (in current period prices) axiom. In order to prove that 

identity and monotonicity represent indeed two independent and different properties it should 

be demonstrated that at least one example of an index function exists that fits to field (1,2) and 

to field (2,1) respectively: 
 

index prices remain constant pit = pi0 prices going up/down 

constant P0t = 1 (1,1) identity (1,2) Σp0q0/Σp0q0 = 1 = const. 

indicates a change* (2,1) V0t = Σptqt/Σp0q0 (2,2) monotonicity 

 * in the correct direction 

(3.1.7) strict proportionality P t( , , , )p q p q0 0 0λ λ= , where  IRλ ∈ , and p pt = λ 0  

(3.1.7a) weak proportionality P( , , , )p q p q0 0 0 0λ λ= , where  IRλ ∈ , p pt = λ 0 , q qt = 0  

Proportionality implies identity but not conversely: 
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if an index satisfies proportionality  then also identity 

 

PL, PP, PF, PDR, P
HPL

, PW, PME and P
GK

 all satisfy the following tests: 

1. identity, 2. determinateness, 3. commensurability, and 4. proportionality 

The following uniqueness theorem (UT - 1) is easy to verify: 

A pair of Fisher indices P t
F
0 , Q t

F
0  is the only pair of indices that satisfies the 

product test (or factor reversal test)  VQP t0

*

t0

*

t0 = and L

t0

*

t0

L

t0

*

t0 QQPP =  
 

An example of an inconsistency theorem 

There do not exist functions, P0t and Q0t which satisfy simultaneously 

1. the identity (strict or weak) axiom, 2. the circular test, and 3. the product test. 

 

Figure 3.1.3: Relations among some axiomatic properties 

change in prices 

 

no change takes place  a change takes place (but extremely simple to describe) 

 

the index should 

not react (P = 1) 

 isolated change of 

only one price 

 all prices change 

at the same rate λ 

 prices change at 

different rates 
 

(1) identity  (2) monotonicity  
(3) proportional-

ity 

 (4) (strict) mean 

value property 
identity is a special 

case of proportional-

ity 

 index should react P ≠ 

1 and show the correct 

direction of change  

 index should equal 

λ, that is P = λ  

 index should represent 

average change such 

that λmin ≤ P0t ≤ λmax 

Relations among the properties are for example: (3) → (1), and (4) → (3). 
 

Figure 3.1.4: Tentative classification of axioms and their uses 

axioms motivated by 

 

fundamental requirements 

of measurement in general
1
 

 the use of index numbers in 

economic analysis 

 analogy between an index 

and individual relatives 
 

1. commensurability  4. monotonicity  7. time reversal test 

2. (price) dimensionality  5. linear homogeneity  8. factor reversal test 
3
 

3. identity  6. aggregative properties 
2
  9. circularity (transitivity) 

 

by implications 

proportionality by 3 + 5 

homogeneity of degree -1 by 2 + 5 

strict mean value property by 3 + 4 + 5  

1 they may be called invariance axioms 

2 see sec. 5.2 

3 unlike the factor reversal test the product test is deemed necessary  
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3.2. Fundamental axioms and their interpretation 

a) Meaning of strict and weak monotonicity f) The meaning of linear homogeneity 

b) Additivity and multiplicativity g) Linear homogeneity and proportionality 

c) Generalization of Bortkiewicz’s theorem*  h) Discrete time approximations and weights 

d) Mean value property (for price relatives) i) Proportionality of quantity indices** 

e) Monotonicity, proport. mean value prop. j) Value dependence test 

*) for additive indices, ** "value index preserving test" 

 

a) The meaning of strict and weak monotonicity 

(3.2.1) P(p q p q p q p q p p0 0 t
*

t 0 0 t t t
*

t, , , ) >  P( , , , ),    if     ≥  and 

(3.2.2) P(p q p q p q p q p p0
*

0 t t 0 0 t t 0
*

0, , , ) <  P( , , , ),    if     ≥ . 

In contrast to strict monotonicity the so called weak monotonicity is defined by 

(3.2.1a) P(p q p q p q p q p p0 0 t t 0 0 0 t t 0, , , ) >  P( , , , )  if     ≥  and 

(3.2.2a) P(p q p q p q p q p p0 , , , ) <  P( , , , )  if     0 t t 0 0 0 t t 0≤ . 

Strict monotonicity implies weak monotonicity  

if strict monotonicity is met  then also weak monotonicity 

but the converse is not true. Two (independent) variants of weak monotonicity: 

prices decline prices rise (pt > p0), eq. 1a 

(pt < p0), eq. 2a yes  no 

yes Palgrave's index Pmin 

no Pmax median of price relatives 

Pmin and Pmax are given by 








0i

it

p

p
min  and max

p

p

it

i0









  respectively. 

 

Figure 3.2.1: Strict and weak monotonicity 

Monotonicity is a statement concerning 

 

one index only, such that 1>P t0  or 

P t0 1<  is required 

 the comparison of two indices, P  and P   0t
*

0t  

such that P Pt t0 0
* >  or P Pt t0 0

* <  is required 

weak monotonicity  strict monotonicity 

the index function is monotonically 

increasing in the price relatives* 

 P t0  and P0t
*  refer to situations which are part-

ly the same and partly different 

inequality the same is different is 

eq. 3.2.1 p q q0 0, , t  p pt  and t
*  

eq. 3.2.2 p q qt t, ,0  p p0  and 0
*  

* This simply means that we should get P > 1 (or P < 1) when the price relatives pt/p0 show a rise (or decrease) 

irrespective of whether the rise (decline) is due to rising prices pt or lowered prices p0 (or lowered prices pt 
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and increased prices p0). That is the reason why there is only one condition comparing pt with p0 whereas 

strict monotonicity needs two conditions (comparing p* with p in period t or in 0). 
 

Index functions that can be conceived as means (averages) of price relatives are always mono-

tonically increasing (decreasing) when the price relatives rise (decrease)*  

* in other words: they are by implication monotonous in the weak sense 
 

 

P
p

p

p q

p q
t

HB

t

0
0 0 0

0 0

1

=










∑
∑

−

 (harmonic mean with base year budget = harmonic Laspeyres) 

P
p

p

p q

p q
t

PA t t t

t t

0

0

=
∑

∑  Palgrave’s index.  

 

Table 3.2.2: Two conditions of strict monotonicity 

eq. 2 base  eq. 1 current period prices 

period prices yes  no 

yes P
L
, P

P
 etc. Palgrave's index P

PA
 

no harmonic Laspeyres P
HB

  median of price relatives 

b) Additivity and multiplicativity as special cases of strict monotonicity 

Assume nonnegative price vectors, p t
*  and p0

*  which are defined as sums of two price vectors 

then the function P(...) is additive if 

(3.2.3) P P Pt t t( , ) ( , ) ( , )*p p p p p p0 0 0= + +  = A + B where p t
*

t t= + +p p , and 

(3.2.4) 
),(P

1

),(P

1

),(P

1

t0t0t

*

0 pppppp
+

+=  = 
1

C
 + 

1

D
 where p p p0

*
0 0= + + . 

 

eq. 4 eq. 3 satisfied eq. 3 violated 

satisfied PL, PP, Dutot PD unweighted harmonic mean of P
L
 and P

P
  

violated Carli's index PC index of Drobisch ½(P
L
 + P

P
) Fisher's ideal index P

F
  

Weak variant of additivity: vector p t
+

b

...

b

=

















and p0
+  is defined correspondingly.  

 

 (3.2.5) ( )P P Pt t t n n( , ) ( , ) ( , ) ,..., , ,...,* *p p Kp Lp p p0 0 0 1 1= = ⋅ φ κ κ λ λ  

where K and L are diagonal matrices 

















κ

κ

=

n

1

0

...

0

K  and 

















λ

λ

=

n

1

0

...

0

L  

and φ is a function depending on the real numbers κ1, κ2, ..., κn, λ1, λ2, ..., λn only such that φ 

is a positive real number. The logarithmic Laspeyres index is multiplicative in current period 

prices only (eq. 3.2.5). Theorem: An index function P( ) that satisfies the conditions of addi-

tivity necessarily must have the following form P
A
 = 0t '' pbpa . This explains also why for 
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example Fisher's ideal index P
F
 does not fulfil the conditions of additivity. The same is true 

for the quadratic mean index14  (3.2.8) P t

QM

0  =  
p

p

p q

p p

t

0

2

0 0

0 0









∑ ∑

 . 

c) Generalization of Bortkiewicz’s theorem for additive indices 

Figure 3.2.2: Generalisation of Bortkiewicz's theorem (ratio of two additive indices) 

first additive index X0  second additive index Xt 

 X
x y

x y

t
0

0

0 0

=
∑
∑

 
 

 X
x y

x y
t

t t

t

=
∑
∑ 0

 

weighted (weights w x y x y0 0 0 0 0= ∑/  

throughout) arithmetic mean of the relatives 

 xt/x0 : 0XX =  
 

 yt/y0 : Y
y x

y x

t=
∑
∑

0

0 0

  *
)
 

variances (weights w0) of the relatives 

xt/x0 : s
x

x
X wx

t2

0

2

0= −








∑  

 
yt/y0 : s

y

y
Y wy

t2

0

2

0= −








∑  

 

the covariance is given by 

 s
x

x
X

y

y
Y w

x y

x y
X Yxy

t t t t= −








 −








 = − ⋅∑

∑
∑0 0

0
0 0

 

and the ratio of two additive indices  

(3.2.9) 
YX

s
1VVr1

X

X xy

yxxy

0

t

⋅
+=+=  where r

s

s s
V

s

Xxy

xy

x y
x

x= =,  and V
s

Yy

y
=  

*
)
 The formula of Y  can be derived from X X= 0  by interchanging x and y. 

It can easily be seen that the special case of sec. 1.3 was as follows: P

t0t

L

t00 PX ,PXX ===  and 

Y Q t

L= 0 .  Only in this case the coefficients of variation, Vx and Vy are symmetrically defined, 

one representing the relative dispersion of price relatives and the other the relative dispersion 

of quantity relatives. 

d) Mean value property (mean value test for price relatives) 

The index should take a value between the smallest and the largest price relative ( a t
i
0 ) 

(3.2.10) ( )min a t
i
0  ≤ P0t ≤ ( )max a t

i
0  (strict mean value property). 

(3.2.11) ( ) ( ) ( )P a at t t
i

t
i( , , , ) min maxp q p q0 0 0 01= + −λ λ  

where "strict" means 0 < λ < 1 whilst in case of "weak" 0 ≤ λ ≤ 1 is admitted. 

                                                 
14 The formula P

QM
 will be referred to in sec. 5.2 because it is aggregative consistent but not (more restrictive) 

additive in the sense defined above.  
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e) Relations between monotonicity, proportionality and mean value property 

if monotonicity* and pro-

portionality** is met 

 then also strict mean 

value property 

* weak monotonicity sufficient 

** or which is the same: identity and linear homogeneity 

Again the converse relation is not true (if strict monotonicity is concerned at least). An exam-

ple for this is once more Palgrave's index. 

given strict mean value property  then also proportionality 

 

given strict mean value property  then also weak monotonicity 

 

given weak mean value property  then also proportionality 

f) The meaning of linear homogeneity 

(3.2.12) P , , ) =   P( , , , ),         0 0 t t 0 0 t t( ,p q p q p q p qλ λ λ ∈ IR  

(3.2.13) ( ) ( )P Pt t t tλ
λ

p q p q p q p q0 0 0 0

1
, , , ,, ,= , 

given linear homogeneity 

and dimensionality  

 then also homogeneity 

of degree -1 

(3.2.14) P
p q

p q
t

Y t t

0

2 2

0
2

0
2

=
∑
∑

,   (3.2.14a) P
p q

p q
t

Y t

0

2
0
2

0
2

0
2

* =
∑
∑

  

g) Linear homogeneity and proportionality 

if linear homogeneity and identity are met  then also (strict) proportionality 

Linear homogeneity (LH) and (strict) proportionality (PR) are independent:  

 

Table 3.2.3: Independence of linear homogeneity and proportionality 

LH PR Examples 

yes no P t
Y
0  (as opposed to *Y

t0P ), value index V0t   

no yes P t
EX
0

1
;  Stuvel's indices 

2)
 ( ST

t0P , Q t
ST
0 );  Vartia-I index

3 
;  2BA

t0P  of Banerjee 

1 exponential mean index (eq. 3.2.15 below) weighted or unweighted 

2 only weak proportionality and identity but not linear homogeneity 

3 This holds true for P
V1

 in contrast to the Vartia II index (P
V2

). Olt 1996, p. 86 erroneously states that the Var-

tia II index violates linear homogeneity and the Vartia I index violates strict proportionality, see sec. 2.6. 
 

(3.2.15) P t

EX

0  = ln
1

0n

p

p

it

i

exp


















∑  , 
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h) Linear homogeneity, monotonicity and mean value property 

if (strict) monotonicity, linear homo-

geneity and identity are met 

 then also (strict) mean 

value property 

 

if (strict) monotonicity and pro-

portionality are met 

 then also (strict) mean value 

property 

 

if (strict) mean value property is met  then also proportionality* 

* Proportionality is clearly an implication of mean value property, but the converse is not true as can be seen by the 

index function Pmax . 
 

Figure 3.2.3: Linear homogeneity, monotonicity and proportionality  
(see also fig. 3.2.1) 

A statement concerning 

 

one index only, reflecting correctly   difference of two indices  

direction of change: weak monotonicity  direction: strict monotonicity 

P t0  is increased ( P t0 >1) whenever any of 

the prices in t are raised or any of the prices 

in 0 are lowered 

 1. P Pt t0 0
* >  if p pt t

* > . or  

2. P Pt t0 0
* <  if p p0 0

* >  
2)

 

amount of change: proportionality  amount: linear homogeneity 

if all prices rise with the same rate 
1)

 λ, the 

index P t0  should amount to λ ( 0t pp λ= )  

 P Pt t0 0
* = λ  if prices in t are p pt t

* = λ  

and in 0 the same, that is p p0 0
* =  

3)
 

1) more precisely λ is the growth factor of prices. 

2) and the other price vectors (p0 in 1 and pt in 2) remain unchanged 

3) comparing prices pt with  p0 (proportionality) or prices pt* and  pt (lin. homogeneity) 

i) Proportionality with respect to quantity indices, the "value index preserving test" 

Proportionality in the case of a quantity index Q means Q t( , , , )p q p q0 0 0λ λ= , and when λ = 1 we 

should get Q = 1 (identity) and therefore 

(3.2.16) P t( , , , )p q p q0 0 0λ Q t

= =1

( , , , )p q p q0 0 0λ

λ
1 2444 3444

=  V0t = 
p q

p q

t 0

0 0

∑
∑

= P t
L
0 =

p q

p q

t t

t

∑
∑ 0

= P t
P
0  

called "value index preserving test" by Vogts (not to be confounded with the Value dependence test). 

Table 3.2.4: Summary information on relationships among axioms 

assumption(s) consequence  assumption(s) consequence 

1 Circular test + 

identity 
time reversal test 

 2 Dimensionality + 

commensurability 
quantity dimensionality 

3 Linear Homo-

geneity + identity 
(strict) proportionality 

 4 Linear Homogeneity 

+ dimensionality 

homogeneity of  

degree -1 

5 strict Mean value 

property 

weak monotonicity, pro-

portionality, dimension. 
1
  

 
6 strict Monotonicity 

weak monotonicity ad-

ditivity 

7 strict Monoton. + 

proportionality
2
 

strict mean value prop-

erty 

 
8 Proportionality 

identity (simply the spe-

cial case λ = 1) 

1 and of course also weak mean value property 

2 because of 2 also strict monotonicity + linear homogeneity + identity → strict mean value property. 
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j) "Value dependence test", another uniqueness theorem for Fisher's ideal index 

The function ( ) ++++ →= RIRI  , ,,PP 4n

t,t000t qpqp  and the following function 

( )P f R IRt t t t t0 0 0 0 0
4= →∑ ∑ ∑ ∑ ++ ++p q p q , p q p q  ,    I, ,   

or simply f(a, b, c, d) should yield the same result. 
 

This means that it should be possible to express the index function P0t as a function of the four 

aggregates Σp0q0, Σp0qt, Σptq0, and Σptqt. 

3.3. Systems of axioms 

a) Irving Fisher's system of axioms (tests) c) Two systems of Eichhorn and Voeller 

b) A system of Marco Martini d) Additional systems of B. Olt  

a) Irving Fisher's system of axioms (tests) 

F1 determinate (determinateness) test 

F2 identity P00 = 1 (pit = pi0 for all i) 

F3 commensurability  

F4 proportionality (strict version)
 
  (p0, q0, λp0, qt) = λ  

F5 time/country reversal test Pt0 = 1/P0t  

F6 factor reversal test P0tQ0t = V0t 

F7 circular test P0t= P0sPst , or P0t= P0r Prs Pst etc. for all 0, r, s, t  

F8 withdrawal-and-entry test  

(3.3.1) ( )( ) P

02

L

02

F

02

P

12

P

01

L

12

L

01

P

12

L

12

P

01

L

01

F

12

F

01 PPP PPPPPPPPPP =≠==   

Besides inconsistency doubts also arose as to the independence of the requirements. 

if the circular test and identity is satisfied  then also the time reversal test 
 

if proportionality is satisfied (F4)  then also identity (F2) 

b) A system of minimum requirements of an index by Marco Martini 

Examples given by Martini to demonstrate the independence of this system 

axioms fulfilled axiom violated example 

2 and 3 1: identity value index V0t = Σptqt/p0q0 

1 and 3 2: commensurability Dutot's index 

1 and 2 3: linear homogeneity exponential mean index (see sec. 3.2) 

(3.3.2) P
p

p

p

p

p

p
t

NM t t nt

n

n

0
1

10

1

2

20

2

0

=






























α α α

...  where α α α αi n= < >∑ 1 0 01 2, , ,...,  . 

c) Two systems of axioms established by Eichhorn and Voeller 

(3.3.4) P P R IRt t t
n

0 0 0
4= →++ ++( , ),p q p q, ,     I    (index function P). 
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Interesting features of the systems of Eichhorn and Voeller, both EV-4 and EV-5,  

1. none of the reversal tests (time and factor reversal test) nor the circular test of Fisher is men-

tioned in the EV-systems 

2. as in most other modern axiomatic systems also no mention is given to axioms restricting the 

type of weighting schemes wanted for an index, i.e. axioms dealing with quantities  

(Examples of such "axioms": weights of both periods, 0 and t should be used, and they should enter the 

formula in a symmetric fashion, more recent variable weights are to be preferred to constant weights of 

base period 0)  

3. though monotonicity is an element of both EV-4 and EV-5 no attention has been given to addi-

tivity as a special case of monotonicity nor to other useful properties relating to aggregation 

and deflation,  

Identity and linear homogeneity in EV-5 have been replaced in EV-4 by proportionality, being weaker 

and implied in EV-5. Hence 

an index function satisfying the 

five axioms system (EV-5) 

 is also able to satisfy the four 

axioms system (EV-4) 
 

Combinations of index formulas 

If P1 , P2 , ..., Pk are price indices each of them satisfying EV-4, or EV-5 respectively then 
~
P = 

a1P1 + a2P2 + ... + anPk or (more general) P  will do so as well 

(3.3.5) ( )α αδ δ δ1 1

1

P P Pk k+ = ...  +  




=αα

≥α≥α≠δ

∑  1 constants, real:

0,...,0    ,0

i

k1
 

 

Figure 3.3.1: Systems of axioms by Eichhorn & Voeller 

Axioms applying to 

 

index formulas depen-  index formulas depending on prices and quantities 

ding on prices only *
)
   

 

  five axioms system (EV-5)  four axioms system (EV-4) 

 

1. monotonicity  1. strict monotonicity  1. strict monotonicity 

2. dimensionality  2. (price) dimensionality  2. (price) dimensionality 

3. identity  3. commensurability  3. commensurability 

4. linear homogeneity  4. identity  4. strict proportionality 

  5. linear homogeneity   

 

by implication 

 

4 + 5 → proportionality 
b)

   

2 + 5 → homog. degree -1  4 → identity 

2 + 3 → quantity dimensionality 

1 + proportionality  → (strict) mean value property 
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d) Additional axiomatic systems of B. Olt and remarks on  

the choice between systems of axioms 

Figure 3.3.2: Three systems of axioms by B. Olt 

Three additional axiomatic systems 

 

Olt 1  Olt 2  Olt 3 
 

1. dimensionality  1. dimensionality  1. dimensionality 

2. commensurability  2. commensurability  2. commensurability 

3. weak monotonicity  3. weak monotonicity  3. strict mean value property 

4. proportionality  4. weak mean value property  4. symmetry 

An index function admissible in the definition "Olt 3" in contrast to "EV-4" is for example Palgrave's index be-

cause of being monotonous only in the weak sense (as [strict] mean value property implies weak monotonicity 

and proportionality) but not in the strict sense (that is the reason why this index does not comply with EV-4).  
 

3.4. Log-change index numbers I: Cobb-Douglas- and Törnqvist-index 

a) Growth rates, log changes, new formulas c) The Törnqvist index 

b) Cobb Douglas index, circular test d) Quantitative relations between 6 indices  
 

a) Growth rates, log changes, and new index formulas on the basis of log changes 

(3.4.1) 
1t

t

1t

1tt
t

y

y

y

yy
r

−−

− ∆
=

−
= , and  

(3.4.2) f
y

y
rt

t

t

t= = +
−1

1 . 

Growth rates and growth factors have the following two disadvantages: 

• they are not symmetric, that is: 
y y

y

y y

y

t t

t

t t

t

−
≠ −

−−

−

−1

1

1  and  

• the sum of two (or more) growth rates over time, has no meaningful interpretation. 

Furthermore, a general notion of growth rate could be as follows: 

(3.4.3) 
)y(A

y

  level

 change absolute
=rate growth

∆
= , 

(1.4.8a) ( ) ( )D
y

y
y y ft

t

t
t t tl =









 = − =

−
−ln ln ln ln( )

1
1 , and 

(3.4.4) L(y y L(y y
y y

y yt t t t
t t

t t

, ) , )
ln( / )− −

−

−

= =
−

≠1 1
1

1

   if  y yt t -1 . 

(3.4.5) D
y

y
r

y y

L(y yt
t

t
t
L t t

t t

l =








 = =

−

−

−

−

ln
, )1

1

1

, 

Growth factor f and growth rate r of P t
L
0 , as an example are defined as follows 
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(3.4.6) ( ) )0(t,1tit

1t,i

it

0i1t,i

0i1t,i

1t,i

t,i

L

1t,0

L

t0L

t0

L

t0 P
p

p

qp

qp

p

p

P

P
Pr1)P(f −

−−

−

−−

=β=













==+= ∑∑

∑
 is an index 

with variable weights whereas both, P t
L
0  and L

1t,0P −  have the same constant weights p0q0/Σ p0q0. 

 

Table 3.4.1: Advantages of log changes over traditional growth rates 

aspect log changes traditional growth rates
1)

 

symmetry ( ) ( )ln lny yt t− −1  = - ( ) ( )[ ]ln lny yt t− −1  no symmetry 

summation 

over succes-

sive intervals 

D Dt tl l+ +1  = ln
y

y

t

t

+

−









1

1

 is a growth related to a 

time span of two periods 
2)

 

the sum r rt t+ +1  is not 

meaningful 

eq. 3.4.3 in-

terpretation 

D
y

A y

y y

L(y yt
t t

t t

l = =
− −

−

∆

( ) , )

1

1

 see eq. 3.4.5 log mean 

of yt and yt-1 as "level" 

lower (or upper) bound, 

that is yt-1 as level A(y) 

in the denominator 

1) rt  in eq. 3.4.1 

2) correspondingly the sum of m adjacent log-change-terms measures a change over m periods 
 

Table 3.4.2: Definition of a "log-change" (price) index *

t0P  

The logarithm ( )*

t0Pln  of a log-change (price) index *

t0P  is a function of logarithmic price relatives 

( )0iit

i

t0 pplnDa = ; for example a weighted arithmetic mean of such i

t0Da  terms: 

(3.4.8) ln ( ) ( )∑= i

t0i

*

t0 DagP  with weights gi where 0iit

i

t0 p/pa = .: 

To give some examples: 

( )*

t0Pln  *

t0P  weights 

∑ 








0i

it

p

p
ln

n

1
 (Carli-type) 

n/1

0i

it

p

p
∏ 








 (Jevons) gi = 1/n for all i 

( ) i

n

1i 0i

itL

t0 g
p

p
lnDPln ∑

=








=  

ig

i 0i

itL

t0
p

p
DP ∏ 








=  

L

t0DP  = logarithmic Laspeyres index* 

∑= 0i0i0i0ii qpqpg  

 
* The notation DP* is chosen in order to indicate a relationship between a traditional index P* and its "log change" 

counterpart. 

See figure 3.4.1 (next page) for an overview over Log change indices 
 

All index functions built as geometric means have extremely simple formulas of growth fac-

tors. For example the unweighted Jevons index P t
JV
0 = 

p

p

it

i

n

i 0

1








∏

/

= n i

t0a∏  meets transitiv-

ity. The growth factor of P t
JV
0  is simply  

(3.4.7) f( P t
JV
0 ) = P t

JV
0 / JV

1t,0P − = ( ) n/1

1t,iit p/p∏ − , 

the geometric mean of 1t,iit p/p −  terms so that  

( ) ( ) ( ) ( ) n/1

1t,iit

n/1

1i2i

n/1

0i1i

n/1

0iit p/p...p/pp/pp/p ∏∏∏∏ −⋅= or (equivalently) 
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(3.4.7a) i

t0Da  = ( )∑∑
τ

τ

=τ

=τ −τ

τ

−

=









=










++








=








lln

p

p
ln

p

p
ln...

p

p
ln

p

p
ln

t

1 1,i

,i

1t,i

it

0i

1i

0i

it .  

However for the Carli index we get  

(3.4.7b) f( C

t0P ) = JC

t0P / C

1t,0P − =
( )

( )
( )∑∑

∑
−

−

≠ np/p
np/p

np/p
1t,iit

0i1t,i

0iit
. 

Figure 3.4.1: Log-change indices 

general structure: ln ( ) ( )∑= i0iit

*

ot gpplnP  with weights gi and L(x,y) = log. mean, 

vi0, vit = absolute values, wi0, wit = relative values (value shares) w = v/Σv  

 

weights gi not depending on 

values or value shares 

 weights gi depending on values (v) 

or value shares (w) 

 

gi = 1/n  gi = αi  values (v)  value shares (w) 

 

Jevons  Cobb-Douglas  Törnqvist  Vartia II 

P
p

p0t
J it

i0

=








∏

1/n

 
 

P
p

p
0t
CD it

i0

=








∏

α
i

 
 gi = arithm. mean 

of w i0  and w it
1)

 

 ( )
( )

g
L w w

L w w
i

i it

i it

=
∑

0

0

,

,
 

 

weights as functions of values v 

 

geometric mean  other functions
2)

 

 

Walsh II 
3)

  Vartia I  Walsh - Vartia  Theil 

P t
W
0

2   P t
V
0

1   P t
WV
0   P t

TH
0  

 

v v

v v

i it

i it

0

0∑
 

 ( )
( )
L v v

L v v

i it

i it

0

0

,

,∑∑
 
4)

 
 

( )( )

v v

v v

i it

i it

0

0∑ ∑
 

 ( )

( )

1
2 0 0

3

1
2 0 0

3

v v v v

v v v v

i it i it

i it i it

+

+∑
 

normalized 

weights Σg = 1 

 weights not nor-

malized Σg ≠ 1 

 weights not nor-

malized Σg ≠ 1 

 normalized weights  

Σg = 1 

1) ( ) 2/www ititi +=  

2) an index function in this context not mentioned here is the index of Rao 

3) The name was given because this index has some resemblance to the "normal" index of 

Walsh 

∑
∑

==
it0i0i

it0iit1W

t0

W

t0
qqp

qqp
PP =

( )( )
( )( )∑

∑
it0i0i0i

it0i0i0i

0i

it

qpqp

qpqp

p

p
. 

4) Note that in general ( ) ( )L v vi L v vi it i it0 0, , ,∑ ∑∑≠ . 
 

 

b) Cobb Douglas index P t
CD
0 , constant weights and the circular test 

(3.4.8) P t
CD

i

i

n

0
1

=










=
∏

p

p

it

i0

α

(and Q t
CD

i

i

n

0
1

=










=
∏

q

q

it

i0

α

correspondingly), 
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where αi are any real constants, Σαi = 1 and 0 ≤ αi ≤ 1, not necessarily expenditure shares. 

(3.4.9) P
p

p

a
p

p

a
p

p

a
p

p

a

P PCD CD CD
02

11

10

21

20

12

11

22

21

01 12

1 1

=



















−
































−













= , (α1 = a, α2 = 1-a) 

Assume constant growth factors of the prices λ1
1

1 1

=
−

p

p

t

t,

and λ2
2

2 1

=
−

p

p

t

t,

 then the growth fac-

tor of P t
CD
0  is λ λ1 2

1a a− , and is constant for all periods t. By contrast he same conditions pre-

vailing in the case of the Laspeyres price index L

t0P  will result in the following growth factors: 

P L
00 1= → P L

01 : λ λ βi
i i

i i
i i

p q

p q

0 0

0 0
1∑

∑ ∑= , P L
01 → P L

02 : λ
λ

λ
λ βi

i i i

i i i
i i

p q

p q

0 0

0 0
2

∑
∑ ∑=  

P L
02 → P L

03 : λ
λ

λ
λ βi

i i i

i i i
i i

p q

p q

2
0 0

2
0 0

3
∑

∑ ∑=  and so on,  

The growth factor of P
CD

  is a geometric mean with constant weights αi (for all periods t = 

1,2, ...) and therefore constant as well whereas the growth factor of P
L
 is an arithmetic 

mean with changing weights and tending to the largest individual growth factor of prices.  
 

Example 3.4.1 

Consider two commodities, with base period expenditure shares ∑== 0i0i10101 qp/qpww  

= 0.6 and w2 = 1 - w = 0.4. Prices are increasing at a constant rate of 80% or 20% respec-

tively such that the constant growth factors are λ1 = 1.8 and λ2 = 1.2, and the prices are 

p pt
t

1 1 10= λ  and p pt
t

2 2 20= λ  respectively. The series of P t
L
0  now is determined by  

 

 t = 0 t = 1 t = 2 t = 3 t = 4 

P t
L
0  1 1.56 2.52 4.1904 7.128 

P Pt
L

t
L

0 0 1, −   1.56 1.62 1.663 1.701 

By contrast the growth rate of CD

t0P  is constant ( ) ( )λ λ1 2

1w w−
= 1.5305. 

The circular test and a characterization (uniqueness theorem) of P
CD

 

(3.4.10) P P
p q

p q

p q

p q
P

p q

p q
s

LW
st
LW s t

s

t
LW t

0

0

0

0

= = =
∑
∑

∑
∑

∑
∑

 

UT-7: The Cobb Douglas index is the unique index function that satisfies 

1. the circular test (transitivity) and  

2. the following five fundamental axioms (EV-5): 1. monotonicity, 2. price-

dimensionality, 3. linear homogeneity, 4. identity and 5. commensurability. 

c) The Törnqvist index P t
T
0  an "unbiased" index formula in a system of six indices 

(3.4.11) P
p

p
0t
T it

i0

iw

i 1

n
=











=
∏  where wi is the mean of expenditure shares for period 0 and 

period t ( )w w wi i0 it= +1
2

= +










∑ ∑

1

2

p q

p q

p q

p q

0 0

0 0

t t

t t

, or alternatively 
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(3.4.12) ( ) ( )[ ]ln( ) ln / ln /P w p p w p pt
T

i it i it it i0 0 0 0

1

2
= + ∑∑ = ( ) ( )[ ]1

2
0 0ln lnDP DPt
L

t
P+ , 

or of course equivalently log P t
T
0  = ( ) ( )[ ]1

2
0 0log logDP DPt
L

t
P+ , where DP0t

L denotes the "loga-

rithmic Laspeyres price index", and P

0tDP  the "log. Paasche price index " respectively. 

(3.4.13a) either P > P P0t
L

0t
F

0t
P>  or P < P P0t

L
0t
F

0t
P< , and 

(3.4.13b) either DP > P0t
L

0t
T

0t
P> DP  or DP < P0t

L
0t
T

0t
P< DP . 

As P P P0t
F

0t
L

0t
P=  is arising from (13a), so does  (3.4.12a) P DP DP0t

T
0t
L

0t
P=  

from the second (13b). Note that for example P > P0t
L

0t
P  does not entail DP > DP0t

L
0t
P  (ex. 3.4.2). 

P
T
 is the geometric mean of two log-change indices DP

L
 and DP

P
, much in the same way as P

F
 is the 

geometric mean of P
L
 and P

P
. Thus the role P

T
 plays with respect to log-change indices (logarithms of 

price relatives) is similar to the role P
F
 plays in the case of normal indices (price relatives). There are 

however limitations to the analogy: P
T
 is a mean of relatives; P

F
 has no such mean-of-relatives inter-

pretation15. On the other hand P
F
 passes the factor reversal test (is "ideal") while P

T
 is not even con-

forming to the (weaker) product test. 
 

(3.4.14) P Pt
T

t
T

w w

0 0 1=


















 =∏∏

p

p

p

p

it

i0

i0

it

i i

. 

(3.4.14a) t0

w

i0

it

w

i0

itP

t0

L

t0 V
q

q

p

p
DQDP

n

1i

n

1i

it0i

≠















= ∏∏

==

, 

Törnqvist's index does not meet the factor reversal test16  

d) Quantitative relations between six indices 

Numerical example (ex. 3.4.2) 

commodity base period (0) current period (t) 

 price quantity value price quantity value 

A 10 20 200 12 20 240 

B 20 16 320 18 20 360 

C 16 30 480 24 25 600 

The price relatives are for commodity A: 1.2, for B: 0.9 and for C: 1.5. Hence we get  

DP
L
 = 1.2 

0.2
 0.9 

0.32
 1.5 

0.48
 = 1.21820, and DP

P
 = 1.2 

0.2
 0.9 

0.3
 1.5 

0.5
 = 1.23071 

and the two "traditional" indices P
L
 = 1.248, and P

P
 = 1.2. Interestingly: 

though P
P
 = 1.2 < P

L
 = 1.248 we have DP

P
 1.231 > DP

L
 = 1.218. 

                                                 
15 Note also that the average weights used in P

T
 can be viewed as crossing of weights whereas eq. 3.4.12/12a can 

be regarded as crossing of formulas. Thus P
T
 has two interpretations (in terms of "crossing"), P

F
 only one. 

16 It does not even meet the product test since the implicit (indirect, antithetic, cofactor) quantity index V/P
T
 is 

not proportional in the quantities qit (because they affect wit). 
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The two geometric means are P DP DPT L P=  = 1.22444 and P
F
 = 1.22376. For the har-

monic Laspeyres index we get PHL = + +






 =

−
0 2

12

0 32

0 9

0 48

15
1 18734

1
.

.

.

.

.

.
.   and for Palgrave’s 

index PPA = ⋅ + ⋅ + ⋅ =12 0 2 0 9 0 3 15 0 5 126. . . . . . . , so that the third unbiased index turns out to 

be P PPA HL  =1.22313.   

P
P
 = 1.2 DP

P
 = 1.23 P

PA
 = 1.26 

P
HL

 = 1.187 D
PL

 = 1.218 P
L
 =1.248 

 

Q
P
 = 0.962 DQ

P
 = 0.976 Q

PA
 = 0.992 

Q
HL

 = 0.969 D
QL

 = 0.984 Q
L
 =1.0 

 

 

Figure 3.4.2: A system of six index formulas (Vartia) and the "five tined fork" of I. Fisher 

type of type of weight structure  The five tined fork 

mean wi0 wit  tine formula 

arithmetic P
L
 (Laspeyres) P

PA
 (Palgrave)  uppermost (+2) P

PA
 

geometric DP
L
 (log. Lasp.) DP

P
 (log. Paasche)  mid-upper (+1) DP

P
 

harmonic P
HL

 (harm.Lasp) P
P
 (Paasche)  middle (0) P

L
, P

T
 

    unbiased P
F
 , P

P
  

    mid lower (-1) DP
L
 

base weight inequality  current weight inequality  lower most (-2) P
HL

 

P t
L
0   ≥  DP t

L
0   ≥  P t

HL
0   P t

PA
0   ≥  DP t

P
0   ≥  P t

P
0    

    Fisher's result was 

   P
PA

 > DP
P
 > P

L
 > P

T
 > 

P
F
 > P

P
 > DP

L
 > P

HL
  

 (3) P Pt
HL

t
PA

0 0    

    

 (2) Törnqvist P t
T
0 = P DP DPt

L
t

P
0 0    

    

 (1) Fisher P t
F
0 = P P Pt

L
t

P
0 0    

There was hardly any attention given to index no. 3. All three indices (1), (2) and (3) are "unbiased" 

index formulas and their results are in general in close agreement with one another. 

Relations (Bortkiewicz type) between DP
P
 and DP

L
 (just like between P

P
 and P

L
) 

covariance between log changes in prices and volumes cov ( )& , &p v  or between log changes in 

prices and quantities cov ( )q,p && ).  

(3.4.16a) log ( )DP t
P
0  - log ( )DP t

L
0  is approximately equal to cov ( )& , &p v ,  

(3.4.16b) log ( )P t
P
0  - log ( )P t

L
0  ≈ cov ( )& , &p q . 
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3.5. Log-change index numbers II: Vartia’s index formulas 

a) Aggregation and the logarithmic mean c) The Vartia-II index 

b) The Vartia-I index d) Properties of Vartia indices  

a) Aggregation of log changes and the logarithmic mean  

 

Figure 3.5.1: Aggregation growth rates over commodities (additive model)  

Notation 1. consider change from 0 to t,  

2. variable referring to individual commodity yi (i = 1, ... ,n),  

3. aggregate ∑ ττ = iyY , τ = 0, 1 (additive model) 

 

conventional growth rate  growth rate on the basis of log changes 

(3.5.2) 

 r Y
Y Y

Y
a

y y

y

t
i

it i

ii

n

( ) =
−

=
−









=
∑0

0
0

0

01

 

  = ∑a r yi i0 ( )  

 (3.5.3) 

 ln ln
Y

Y

b

b

y

y

t i

ii

n
it

i0 1 0









 =











∑
∑
=

 

 ( )= ∑βi it iy yln 0 , βi = bi/Σbi 

weights 
0

0i

0i

0i

0i
Y

y

y

y
a ==

∑
 

 
weights ( )b L a ai i it= 0 , , 

∑
=

it

it

it
y

y
a  

Commentary on the type of weights 

weights ai0 are making use of the structural 

information related to period 0 only 

 bi being an average of ai0  and ait are tak-

ing both periods into account* 

* weights are "balanced", i.e. they employ structural data of both periods. 
 

 

Decompositions of total value log changes 

a) use means of absolute values v and weights L(vi0,vit), which leads to 

ln , )
v

v
L(v v V V

it

i
i i it t

0
0 0









 = −∑ , and since ( )

( )
L V V

V V

V V
t

t

t

,
ln

0
0

0

=
−

 we get 

(3.5.4) ln ln
, )

, )

V

V

v

v

L(v v

L(V V

t it

i

it i

t0 0

0

0









 =









∑  which is the basis for the Vartia-I index; 

b) use value shares wit = vit/ΣΣΣΣvit = vit/Vt and wi0 = vi0/ΣΣΣΣvi0 = vi0/V0 and weights L(wi0,wit) 

( )
( ) ( )

L w w
w w

v v V V
it i

it i

it i t

,
ln ln

0
0

0 0

=
−

−
 to get 

(3.5.5) ( ) ( ) ( ) ( ) ( )L w w v v w w L w w V Vit i it i it i it i t, ln , ln0 0 0 0 0= − +   

and since w wit i= =∑∑ 0 1 we get 

ln , ) , ) ln
V

V
L(w w L(w w

v

v

t
it i it i

it

i0
0 0

0









 =



















∑ ∑ , and finally 

(3.5.6) ln ln
, )

, )

V

V

v

v

L(w w

L(w w

t it

i

it i

it i0 0

0

0









 =





















∑
∑ , which is the basis for the Vartia-II index.  
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b) The Vartia-I index ( )P t
V
0

1
 

The Vartia-I price index is defined as 

(3.5.8) ( )
( )

( )
ln

, ln

,
P

L v v
p

p

L V V
t

V
it i

it

ii

n

t
0

1
0

01

0

=











=
∑

, and correspondingly the quantity index 

(3.5.8a) ( ) ( ) ( )ln , ln ,Q L v v
q

q
L V Vt

V
it i

it

ii

n

t0
1

0
01

0=










=
∑ , 

(3.5.8b) ( )( )1V

t0

0iit

0iit

0t

0iit

0i

it

0t

0iit Qln
)q,q(L

qq

)V,V(L

)v,v(L

q

q
ln

)V,V(L

)v,v(L
∆=

−
=








  

c) The Vartia-II index ( )P t

V

0

2  

(3.5.9) ( )ln $ ln / ,V w v vt i it i0 0= ∑  

( ) ( )$ , / ,w L w w L w wt it i it i= ∑0 0  and w v V p q p qit it t it it it it= = ∑/ /  (wi0 defined analogous-

ly). By virtue of eq. 9 the indices P t
V
0

2  and Q t
V
0

2  pass the factor reversal test. To prove eq. 9 

use (3.5.10) ln ln ln ln ln
w

w

v

v

v

v

v

v

V

V

t t t t t

0 0 0 0 0

= − = −
∑

∑
 taking into account Σwt = Σw0 =1.. 

The Vartia II indices now are defined as follows 

(3.5.11) ( )
( )

( )
ln

, ln

,
P

L w w
p

p

L w w
t

V
it i

it

i

it i
0

2
0

0

0

=











∑
∑ = ( )$ lnw p pit it i0∑ , and 

(3.5.11a) ( )ln Q t
V
0

2 = ( )$ lnw q qit it i0∑ . 

 

Figure 3.5.2: Törnqvist, Vartia-II and Walsh-II index 

general structure: P g
p

p

it

i

g

( ) =








∏

0

 

with weights g (Σg = 1) 

 

Törnqvist  Vartia II  Walsh II  

g = ( )w w w t= +1
2 0   g = $ , ) / ( , )w L(w w L w wt t= ∑0 0   g = v v v vt t0 0/ ∑  

( )w w L(w w w w wt t t0 0
1
2 0≤ ≤ + =, ) , w w v v V Vt t t0 0 0=  

d) Properties of Vartia indices 

P
V1

 can (unlike P
V2

) fail proportionality as well as linear homogeneity (see ex. 3.5.2). 

Log change indices may violate monotonicity (ex. 3.5.4). 
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Example 3.5.4  

 p0  p t  q0  q t  

1 30 40 50 20 

2 80  4 40 

The following values are examined for the price p2t 1, 5, 10, yielding values for various log 

change index functions as follows. We expect of course that p2t = 5 will yield a higher P0t 

as p2t = 1 and again p2t = 10 a higher value of P0t as in the case of p2t = 5. However this is 

not true for the following indices17: P t
W
0

2 = Walsh II, P t
V
0

1 = Vartia I, P t
V
0

2 = Vartia II, P t
WV
0 = 

Walsh-Vartia, P t
T
0 = Törnqvist, and P t

TH
0 = Theil. 

p2t P t
L
0  P t

P
0  P t

W
0

2  P t
V
0

1  P t
V
0

2  P t
WV
0  P t

T
0  P t

TH
0  

1 1.101 0.221 0.861 0.701 0.837 0.864 0.791 0.813 

5 1.110 0.263 0.751 0.454 0.751 0.751 0.750 0.753 

10 1.121 0.316 0.744 0.193 0.740 0.748 0.730 0.749 

Only the two indices added for sake of comparison that is Laspeyres and Paasche (shaded area) 

comply with strict monotonicity, but none of the log change indices does so. Furthermore these in-

dices differ tremendously from one another. So virtually all log-change indices display a decrease 

in prices when an isolated rise in price p2t takes place from 1 to 5 and to 10. ♦ 
 

3.6. Ideal index functions and Theil's Best Linear Index (BLI) 

Three-component model of value change (the structural component) 

1. Additive model (value change) 

(3.6.1) p qt t
' - p qt t

'  = q p p p q q q q p p0 0 0 0 0 0
' ' ' '( ) ( ) ( )( )t t t t− + − + − −  

 = q p p q q p0 0
' ' '∆ ∆ ∆ ∆t t t t+ +  = PC + QC +SC. 

The following interpretation of this simple definitional equation is usually given 

• the pure price component (PC) is represented by  q p0
' ∆ t = p q p qit i0 i0 i0∑ −∑  

• the pure quantity component (QC) is p q0
' ∆ t = p q p qi0 it i0 i0∑ −∑  

• the structural component (SC) is ∆ ∆ ∆ ∆q p p qt t t t
' '=  = ( )( )p p q qit i0 it i0− −∑ . 

Dividing both sides of eq. 1 by p q0 0
'  yields an equation known from Stuvel's approach: 

(3.6.2) V - 1 = (P
L
 - 1) + (Q

L
 - 1) + (V - P

L
 - Q

L
 + 1) = PC + QC + SC.18 

2. Multiplicative model (value ratio) 

Aggregation of a two components multiplicative micro-model: Vartia's solution  

Ideal index functions on the basis of log changes, like the two Vartia indices cannot be derived 

as easily as Fisher's indices, P t
F
0  and Q t

F
0 . The trick is to find appropriate weights for individ-

ual log changes. 
 

                                                 
17 Some log change indices not discussed above are also included in this example and Olt's original table.  
18 Fig. 3.6.1 provides a geometric interpretation of this relationship with three shaded fields representing PC, QC 

and SQ and shows how Stuvel has managed to allocate parts of the structural component SC to PC and QC. 
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Figure 3.6.1: Stuvel's way of deriving an ideal index 

a) Additive approach 

(3.6.2) V - 1  = (P
L
 - 1) + (Q

L
 - 1) + (V - P

L
 - Q

L
 + 1) 

  = PC + QC + SC 

 

 

b) Stuvel's solution 
 

price component PC  structural change component SC  quantity component QC 

P t
L
0 1−   V P Qt t

L
t

L
0 0 0 1− − +   Q t

L
0 1−  

 

( )1
2 0 0 0 1V P Qt t

L
t

L− − +   ( )1
2 0 0 0 1V P Qt t

L
t

L− − +  

 

new price component 

P* = PC + ½SC 

 new quantity component 

Q* = QC + ½SC 

P* = ( ) ( )1
2 0 0

1
2 0 1P Q Vt

L
t

L
t− + −   Q* = ( ) ( )1

2 0 0
1
2 0 1Q P Vt

L
t

L
t− + −  

 

The product P*Q* is not meaningful, since P*Q* = [(V - 1)
2
 - (P

L
 - Q

L
)

2
]. A better solution is 

 

P
ST

 = ( )1
2 0 0

1
2

P Q Rt
L

t
L− +   Q

ST
 = ( )1

2 0 0
1
2

Q P Rt
L

t
L− +  

 

The product P
ST

Q
ST

 should equal V, thus setting P
ST

Q
ST

 = [R
2
 - (P

L
 - Q

L
)
2
] = V we get 

R

2
= 

P - Q  

2

0t
L

0t
L







 +

2

0V t =
Q - P  

2

0t
L

0t
L







 +

2

0V t  

 

 

 

Figure 3.6.2: Fisher's way of deriving an ideal index 

price component PC*  structural change component SC*  quantity component QC* 

p q

p q

t
'

'

0

0 0

= P t
L
0  

 p q

p q

p q

p q

t t

t t
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'

'
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0
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L
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p q
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'
0
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t t
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'

'

'
0
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new price component 

P
F
 = PC*(SC*)

1/2
 

 new quantity component 

Q
F
 = QC*(SC*)

1/2
 

P P Pt
F

t
L

t
P

0 0 0= = 
p q

p q

p q

p q

t t t

t

'

'

'

'

0

0 0 0

 
 

Q Q Qt
F

t
L

t
P

0 0 0= = 
q p

q p

q p

q p

t t t

t

'

'

'

'

0

0 0 0

 

 

 

(3.6.4a) ln( / ) ln( / ) ln( / )v v p p q qit i it i it i0 0 0∑ ∑ ∑= + . 

The key equations explaining why P t
V
0

1 and Q t
V
0

1 , or P t
V
0

2  and Q t
V
0

2  are satisfying the factor 

reversal test and also relating Vartia-I- and Vartia-II weights are  
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(3.6.5) ln( ) ln( ) ln( )v w Vi i0 0 0= +  and correspondingly ln( ) ln( ) ln( )v w Vit it t= +  

(3.6.6) 
( )L v v

L V V
v v

it i

t
it i

,

( , )
ln( / )

0

0
0 = 

v v

V V
Vit i

t

t

−

−
0

0

0ln( )  

 ∑
−

−
= )w,w(L/)v/vln( 

wlnwln

ww
0iit0iit

0iit

0iit  

 ( ) ( ) ( )[ ] ∑+−= )w,w(L/w,wLVlnww 0iit0iitt00iit  

 

Figure 3.6.3: Vartia's way of deriving ideal log-change-indices 

a) Micromodel in log changes 

(3.6.4) ln ln ln
v

v

p

p

q

q

it

i

it

i

it

i0 0 0

= +  since by definition 
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v
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i
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i
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= = 

b) Aggregation problem 

( )ln ln
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i
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





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i
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
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
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







∑ ∑ ∑ln ln ln

0 0 0

 ⇒ two solutions (Vartia I and II) 

Figure 3.6.4: Weights in aggregating log-changes, Vartia's solution
1
 

Single commodity (i) equation (definition): (3.6.4) ln( / ) ln( / ) ln( / )v v p p q qit i it i it i0 0 0= +  

Aggregation:  g v v g p p g q qi it i i it i i it iln( / ) ln( / ) ln( / )0 0 0= +∑∑ ∑  
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0

2
 because these indices 

are defined this way. The same is true for quantity indices. It only remains to prove that the 

weighted aggregation g v vi it iln( / )0∑  results in ln( )V t0 , with value index V0t. 

2 see eq. 3.6.6 

 

Theil's Best Linear Index (BLI) – the two situation case (times 0, t) –  
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Note: This is not the end of the Index-Theory part of the course. As all index formulas can be con-

ceived as direct indices, or as chain indices (links), there will also be some more index theory pre-

sented in chapter 7. Moreover, as most index formulas have been recommended as deflators too, we 

also deal with index theory in chapter 5 (in particular with the aggregation issue). Finally formulas 

such as P
F
 or P

T
 have also been proposed as appropriate for international comparisons. Thus they will 

appear in chapter 8 once again.19 

Chapter 4  Price collection, quality adjustment and sampling  

in official statistics 

4.1. The set up of a system of price quotations and price indices in official 

statistics (the example of Germany) 

Price quotations and compilations of indices have to be timely, regularly and systematic. They 

should consistently cover a wide field of market activities (sales/purchases), serve a great va-

riety of users and purposes, and should be carried out by a neutral, competent and trustworthy 

institution20. In some instances it will be more, in other less difficult to arrive at correct prices 

and weighting schemes for price indices, and there is also often a need for compromises, 

sometimes even for makeshift solutions in the light of conflicting principles in price statistics.  

In the implementation of a system of surveys in price statistics decisions have to be made on: 

1. the kind of prices to be collected (scope of price statistics),  

2. the source of information best to be used (e.g. sellers or buyers21), and  

3. the periodicity of regular surveys. 

What type of prices should be observed: actual transaction prices vs. list prices; when a contract is 

made, the transaction effectively occurs, or when consumption takes place; excluding/including VAT. 

The denomination of the index should denote 

a) whether goods (and their prices), and weights refer to the supply side (sales) or the demand side 

(purchases), 

b) the branch or sector (or the type of business involved) the index refers (institutional as opposed 

to functional approach). 

Remark concerning price indices plus unit value indices (see sec. 6.4) in foreign trade statistics (a 

peculiarity of Germany) and some services (air transport for example) 

• unit value indices display more (or too much) volatility and they are said to be less suitable for 

deflation than true price indices; 

• price indices are true Laspeyres indices, reflecting pure price movement, and they refer to 

prices at an early stage (when a contract is made) and to narrowly defined commodity groups, 

so they may have a lead relative to unit value indices. 

                                                 
19 PF and PT are of interest because they comply with "country reversibility" (the interspatial criterion of what is 

known as time reversibility in the intertemporal context). 
20 Official statistics has to avoid the impression of applying questionable methods, or of experimenting with con-

cepts and formulas that are difficult to understand and sometimes advanced not without some political interest. 
21 There are very few cases in which buyers can give adequate and competent information on prices on a regular 

basis, taking into account also all of the price determining characteristics (PDCs, like quality for example) and 

the changes in the PDCs. On the other hand it has sometimes been claimed that in a democratic system consumer 

prices should be reported by the many buying households and not by the few selling enterprises. 


